共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of dispersed n -dodecane or n -hexadecane on the air-to-aqueous phase overall volumetric oxygen transfer coefficient in a simulated (cell-free) stirred-tank fermentor is described. The oil volume fraction ranged from zero to 0.10; the ionic strength of the aqueous phases was varied from 0 to 0.45. The air-to-aqueous phase coefficients in both oil-free (KLa) and oil-bearing (KLa*) systems were evaluated from unsteady-state experiments using a membrane-covered probe to follow the aqueous phase dissolved oxygen tension. For all systems studied, KLa*/KLa was found to be independent of P/V and vs for all practical purposes. However, for a particular aqueous phase and at a given P/V and vs, the ratio KLa*KLa generally differed from unity. Depending on the combination of hydrocarbon type and volume fraction and the aqueous-phase ionic strength employed, the dispersed hydrocarbon may, in some cases, reduce the rate of oxygen transfer and in others enhance it relative to that of the corresponding oil-free gas–liquid dispersion. Enhancement of the air-to-aqueous transfer rate by such negative spreading coefficient hydrocarbons has not been reported previously. 相似文献
2.
Mooyman JG 《Biotechnology and bioengineering》1987,29(2):180-186
There are many scaling formulas that predict the oxygen mass transfer coefficient as k(L).a = constant.(Hp/V)(alpha)Vs(beta) Exponents alpha and beta frequently are scale dependent themselves. A general formula has been derived from the work of Calderbank,(1) Miller,(2) and Tilton,(3) resulting in k(L).a = C(1) phi + C(2) log (Pm/V) phi where phi equals the gas-holdup fraction and Pm/V equals the effective mechanical power input per unit of volume. This formula is consistent with the formula of Westerterp(4) modified by Miller.(2) Gas holdup can be predicted in several ways. Gas-sparged isothermal expansion power input, used for predicting phi, demonstrates that scaling can be done by using either superficial air velocity or volume per volume per minute for aeration.The importance of mixing in replenishing oxygen at the boundary layers of microorganisms will be assessed and compared with the k(L).a as the oxygen transfer ratelimiting step. 相似文献
3.
The response of a polarographic oxygen electrode to a step change and to an exponential change in bulk oxygen concentration was studied theoretically and experimentally for the case where there is a significant liquid film resistance at the outerside of the membrane-covered electrode. The probe response has been described considering the start-up period of the concentration changes (the period of time that will elapse before the new concentration level is established and/or before the volumetric mass transfer coefficient kLa regains its steady-state value after the gas supply is opened to the fermentor). A linear change of the pertinent characteristics is assumed during this start-up period. It is shown that a substantial error could be introduced by neglecting the start-up period for cases frequently occurring in practice. In addition, the dependences of the probe response on the direct contact of bubbles with an electrode and on the fluid flow field around it were discussed. 相似文献
4.
V. Saravanan B. Hemachandran A. Eugene Raj S. Sundaram 《Bioprocess and biosystems engineering》2000,23(2):175-176
The effluent from a dairy cold storage plant was studied for the levels of dissolved oxygen saturation. The effluent to the aerobic digester mainly contains lactose, milk fat, protein and lactic acid. The study was conducted at five different temperatures in a two litre laboratory fermentor. The volumetric liquid phase mass transfer coefficient was correlated to temperature with an average absolute deviation of 6.2%. 相似文献
5.
Claucia Fernanda Volken de Souza Rafael Costa Rodrigues Marco Antônio Záchia Ayub 《Biotechnology and Bioprocess Engineering》2009,14(5):571-576
The effects of oxygenation in cultures of Bacillus circulans BL32 on transglutaminase (TGase) production and cell sporulation were studied by varying the agitation speed and the volume
of aeration. Kinetics of cultivations has been studied in batch systems using a 2 L bioreactor, and the efficiency of agitation
and aeration was evaluated through the oxygen volumetric mass transfer coefficient (kLa). It was adopted a two-stage aeration rate control strategy: first stage to induce biomass formation, followed by a second
stage, in which cell sporulation was stimulated. A correlation of TGase production, spores formation, and oxygen concentration
was established. Under the best conditions (500 rpm; 2 vvm air flow, followed by no air supply during stationary phase; kLa of 33.7 h−1), TGase production reached a volumetric production of 589 U/L after 50 h of cultivation and the enzyme yield was 906 U/g
cells. These values are 61% higher than that obtained in shaker cultures and TGase productivity increased 82%, when kLa varied from 4.4 to 33.7 h−1. The maximal cell concentration increased four times in relation to shaker cultures and the cultivation time for the highest
TGase activity was reduced from 192 h to just 50 h. These results show the importance of bioprocess design for the production
of microbial TGase, especially concerning the oxygen supply of cultures and the induction of cell sporulation. 相似文献
6.
Determination of power consumption and volumetric oxygen transfer coefficient in bioreactors 总被引:3,自引:0,他引:3
P. R. Vilaça A. C. Badino Jr. M. C. R. Facciotti W. Schmidell 《Bioprocess and biosystems engineering》2000,22(3):261-265
A torque meter has been developed for determining the power consumption in a bench stirred tank. The device has been bonded in the stirrer shaft inside a commercial bench fermentor, in order to avoid frictional losses in the mechanical seal. Power consumption measurements in ungassed and gassed systems were obtained at different agitation and aeration conditions, for Newtonian and non-Newtonian fluids. Also, a simple modified sulfite method for volumetric oxygen transfer coefficient (kLa) determination was developed and the experimental data were correlated with the gassed power (Pg) by using well-known correlations presented in the literature. 相似文献
7.
8.
Gas holdup and overall volumetric oxygen transfer coefficient in airlift contactors 总被引:13,自引:0,他引:13
The two major types of airlift contactors, concentric-tube and external-loop, were investigated for their gas holdup (riser and downcomer) and overall mass transfer characteristics. Results obtained in batch charges of tap water and 0.15 kmol/m(3) NaCl solution are reported for external-loop airlift contactors having downcomer-to-riser cross-sectional area ratios, A(d)/A(r), ranging from 0.11 = A(d)/A(r) = 0.69 and for concentric-tube types in the range 0.13 = A(d)/A(r) = 0.56.The results are compared and contrasted for the two types of airlift contactors and also with corresponding results obtained in a bubble column (A(d)/A(r) = 0). Both the riser gas holdup, (epsilon(G))(r), and the overall volumetric mass transfer coefficient, (K(L)a(D))(T), were found to increase with increasing gas superficial velocity and the corresponding specific gassing power input, (P(G)/V(D))(T). However, at a specified power input both (epsilon(G))(r) and (K(L)a(D))(T) decreased with increasing A(d)/A(r) due to a resultant increase in circulating liquid velocity. Unifying generalized correlations for both types of airlift contactors are given for both (epsilon(G))(r) and (K(L)a(D))(T). These correlations are expected to be applicable as well to continuous-liquid flow bubble columns at comparable liquid velocities. 相似文献
9.
Differing findings on the volumetric mass transfer coefficients k(L)a in CMC solutions in bubble column bioreactors have been reported in the literature. Therefore, oxygen mass transfer was studied again in CMC solutions in a 14-cm-i.d. x 270-cm-height bubble column using different spargers. The k(L)a values were determined along with the dispersion coefficients by fitting the prediction of the axial dispersed plug model with the experimental oxygen concentration profiles in the liquid phase. Surprisingly, the obtained liquid phase dispersion coefficients for CMC solution are higher than one would expect from correlations. The k(L)a data depend largely on the flow regime. In general, they are lower than those reported in the literature. The data for developing slug and established slug flow are dependent on the gas velocity and the effective viscosity of the solution and can br correlated by a simple correlation. This correlation describes k(L)a values measured on fermentation broth of Penicillium chrysogenum with striking agreement. 相似文献
10.
11.
Giandra Volpato Rafael C. Rodrigues Júlio Xandro Heck Marco Antônio Záchia Ayub 《Biotechnology and Bioprocess Engineering》2009,14(1):105-111
The principal objectives of this study were to evaluate the kinetics of lipase production by Staphylococcus warneri EX17 under different oxygen volumetric mass transfer coefficients (kLa) and pH conditions in submerged bioreactors, using glycerol (a biodiesel by-product) as a carbon source. Cultivations were
conducted at different kLa (26, 38, 50, and 83 h−1) and pH values (6.0, 7.0, and 8.0). The optimal kLa and pH were 38 h−1 and 7.0, respectively. Under these conditions, the maximal cell production obtained was 8.0 g/L, and the volumetric and specific
lipase production reached high levels of activity, approximately 800 U/L and 150 U/g cell, respectively, after 12 h of cultivation.
This result was approximately five times higher than that obtained in the shake flask cultures. The relationship between cell
growth and lipase production was found to be associated with growth by the Luedeking-Piret model. 相似文献
12.
Dorresteijn RC de Gooijer CD Tramper J Beuvery EC 《Biotechnology and bioengineering》1994,43(2):149-154
A static method was developed that simultaneously determined the solubility of oxygen and the oxygen-transfer coefficient in a stirred bioreactor. It was based on the static method developed by van Sonsbeek et al. to determine the ka in a liquid-impelled loop reactor. Only physical properties of the liquid were used to determine both parameters using a mass spectrometer. Data about the solubility of oxygen in water are available from the literature. Therefore, the solubility of oxygen in water was used to compare our data with published data. Furthermore, the solubility of oxygen in trypticase soy broth was compared to literature data. No significant deviations between our data and literature data could be observed. Our static method and the commonly applied dynamic method to determine the oxygen-transfer coefficient yielded similar results. The effect of temperature on the oxygen-transfer coefficient could be expressed as the activation energy needed for the transition of oxygen from the gas to the water phase. This was verified using the Arrhenius equation. (c) 1994 John Wiley & Sons, Inc. 相似文献
13.
14.
Farnaz Behzadian Laleh Yerushalmi Mahmood Alimahmoodi Catherine N. Mulligan 《Bioprocess and biosystems engineering》2013,36(8):1043-1052
The hydrodynamic characteristics and the overall volumetric oxygen transfer coefficient of a new multi-environment bioreactor which is an integrated part of a wastewater treatment system, called BioCAST, were studied. This bioreactor contains several zones with different environmental conditions including aerobic, microaerophilic and anoxic, designed to increase the contaminant removal capacity of the treatment system. The multi-environment bioreactor is designed based on the concept of airlift reactors where liquid is circulated through the zones with different environmental conditions. The presence of openings between the aerobic zone and the adjacent oxygen-depleted microaerophilic zone changes the hydrodynamic properties of this bioreactor compared to the conventional airlift designs. The impact of operating and process parameters, notably the hydraulic retention time (HRT) and superficial gas velocity (U G), on the hydrodynamics and mass transfer characteristics of the system was examined. The results showed that liquid circulation velocity (V L), gas holdup (ε) and overall volumetric oxygen transfer coefficient ( $ k_{\text{L}} a_{\text{L}} $ ) increase with the increase of superficial gas velocity (U G), while the mean circulation time (t c) decreases with the increase of superficial gas velocity. The mean circulation time between the aerobic zone (riser) and microaerophilic zone (downcomer) is a stronger function of the superficial gas velocity for the smaller openings (1/2 in.) between the two zones, while for the larger opening (1 in.) the mean circulation time is almost independent of U G for U G ≥ 0.023 m/s. The smaller openings between the two zones provide higher mass transfer coefficient and better zone generation which will contribute to improved performance of the system during treatment operations. 相似文献
15.
16.
Daniela de Araújo Viana Marques Beatriz Rivas Torres Ana Lúcia Figueiredo Porto Adalberto Pessoa-Júnior Attilio Converti 《Biochemical Engineering Journal》2009,47(1-3):122-126
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses; therefore, the knowledge of the volumetric mass transfer coefficient (kLa) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the kLa values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium, in the absence of biomass. Aeration and agitation were selected as the independent variables using a 22 full factorial design. Both variables showed statistically significant effects on kLa, and the highest values of this parameter in both media for simple fermentation (241 s−1) and extractive fermentation with ATPS (70.3 s−1) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The kLa values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N3D2) and superficial gas velocity (Vs) determined in distilled water (α = 0.39 and β = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (α = 0.38 and β = 0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (α = 0.50 and β = 1.0). A reasonable agreement was found between the experimental data of kLa for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions. 相似文献
17.
Jose R Garcia Hyung J Cha Govind Rao Mark R Marten William E Bentley 《Microbial cell factories》2009,8(1):6-7
Background
Small-scale microbial fermentations are often assumed to be homogeneous, and oxygen limitation due to inadequate micromixing is often overlooked as a potential problem. To assess the relative degree of micromixing, and hence propensity for oxygen limitation, a new cellular oxygen sensor has been developed. The oxygen responsive E. coli nitrate reductase (nar) promoter was used to construct an oxygen reporter plasmid (pNar-GFPuv) which allows cell-based reporting of oxygen limitation. Because there are greater than 109 cells in a fermentor, one can outfit a vessel with more than 109 sensors. Our concept was tested in high density, lab-scale (5 L), fed-batch, E. coli fermentations operated with varied mixing efficiency – one verses four impellers. 相似文献18.
A general relationship for prediction of the volumetric oxygen transfer coefficient (kLa) in a tower bioreactor utilizing immobilized Penicillium chrysogenum as function of air superficial velocity, suspension rheological parameters and liquid physical properties is proposed in this study. The relationship was applied to three different systems and a good agreement between the calculated values and the experimental data was obtained. 相似文献
19.
Experiments were conducted using glass beads and low-density particles such as polyurethane and polystyrene which are comparable to bioparticles found in biological applications to evaluate the overall volumetric mass transfer coefficient (K L a) in a modified reversed flow jet loop bioreactor having the liquid outlet at the top section of the reactor. The influence of the gas and liquid flow rates, draft tube to reactor diameter ratio, solids loading and physical properties of solids onK L a were studied. TheK L a was found to increase with the increased gas and liquid flow rates. TheK L a values were found to be higher in the bubbly flow region i.e., at the lower range of energy dissipation rates. The optimum draft tube to reactor diameter ratio and solids loading with respect to maximumK L a were found to be 0.4 and 0.9×10?3 m3 (? s =0.025) respectively. Dimensionless correlations were presented to predict the experimental values in terms of operational and geometrical variables. 相似文献
20.
The estimation of volumetric mass transfer coefficient, k(L)a, in stirred tank reactors using artificial neural networks has been studied. Several operational conditions (N and V(s)), properties of fluid (μ(a)) and geometrical parameters (D and T) have been taken into account. Learning sets of input-output patterns were obtained by k(L)a experimental data in stirred tank reactors of different volumes. The inclusion of prior knowledge as an approach which improves the neural network prediction has been considered. The hybrid model combining a neural network together with an empirical equation provides a better representation of the estimated parameter values. The outputs predicted by the hybrid neural network are compared with experimental data and some correlations previously proposed in the literature for tanks of different sizes. 相似文献