首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A partial promoter region of the high-molecular weight (HMW) glutenin genes was studied in two wheat specimens, a 300 year-old spelt (Triticum spelta L.) and an approximately 250 year-old bread wheat (Triticum aestivum L.) from Switzerland. Sequences were compared to a recent Swiss landrace T. spelta ’Oberkulmer.’ The alleles from the historical bread wheat were most similar to those of modern T. aestivum cultivars, whereas in the historical and the recent spelt specific alleles were detected. Pairwise genetic distances up to 0.03 within 200 bp from the HMW Glu-A1-2, Glu-B1-1 and Glu-B1-2 alleles in spelt to the most-similar alleles from bread wheat suggest a polyphyletic origin. The spelt Glu-B1-1 allele, which was unlike the corresponding alleles in bread wheat, was closer related to an allele found in tetraploid wheat cultivars. The results are discussed in context of the origin of European spelt. Received: 22 July 2000 / Accepted: 27 April 2001  相似文献   

2.
A winter bread wheat accession from the Arsenal collection was genetically examined to study the results of introgression, which substantially changed the physiological and morphological traits of the original spring cultivar Rodina. Apart from its winter habit, the accession was characterized by awned speltoid spikes, suggesting introgression into chromosome 5A, which carries marker genes in the order Vrn-A1-Q-B1. Genetic analysis showed that the chromosome fragment introgressed from Aegilops speltoides recombined well with the homeologous region of bread wheat chromosome 5A in the region between the Vrn-A1 and Q genes. Recombination between the Vrn-A1 and B1 genes was not detected, and it was assumed that the order of the marker genes of chromosome 5A was inverted to produce Q-Vrn-A1-B1. When the winter introgression line was crossed with Triticum spelta L., an interaction of two dominant genes determining the spike character was for the first time detected in F1, increasing the spike length and the number of spikelets, and followed with transgression in F2. It was assumed that Ae. speltoides had a homeoallelic speltoid gene, which was designated as Q S .  相似文献   

3.
The Q locus of Iranian and European spelt wheat   总被引:3,自引:0,他引:3  
A dominant allele at the Q locus on chromosome 5A is believed to be the principal factor responsible for free-threshing, square-head spikes with a non-fragile rachis in bread wheat, Triticum aestivum ssp. aestivum. The spelt syndrome, resulting in pyramidal spikes with a brittle rachis and hulled grain in T. aestivum, is believed to be principally caused by the q allele. Chromosome 5A of European and Iranian spelt was substituted for 5A of bread wheat and the lines were characterized with molecular markers. The substitution of bread wheat chromosome 5A by 5A of European spelt resulted in weakly hulled, pyramidal spikes with a non-brittle rachis, whereas and the substitution of 5A by 5A of Iranian spelt did not alter spike morphology at all. It is concluded that the expression of the spelt syndrome depends, to a large extent, on the interactions of q with genes controlling glume tenacity and rachis fragility on other chromosomes. The genetic basis for the spelt syndrome and the apparent presence of the Q allele in Iranian spelt are discussed. Received: 14 April 1999 / Accepted: 21 July 1999  相似文献   

4.
The allelic compositions of high- and low-molecular-weight subunits of glutenins (HMW-GS and LMW-GS) among European spelt (Triticum spelta L.) and related hexaploid and tetraploid Triticum species were investigated by one- and two-dimensional polyacrylamide-gel electrophoresis (PAGE) and capillary electrophoresis (CE). A total of seven novel glutenin alleles (designated A1a*, B1d*, B1g*, B1f*, B1j*, D1a* at Glu-1 and A3h at the Glu-3 loci, respectively) in European spelt wheat were detected by SDS-PAGE, which were confirmed further by employing A-PAGE and CE methods. Particularly, two HMW-GS alleles, Glu-B1d* coding the subunits 6.1 and 22.1, and Glu-B1f* coding the subunits 13 and 22*, were found to occur in European spelt with frequencies of 32.34% and 5.11%, respectively. These two alleles were present in cultivated emmer (Triticum dicoccum), but they were not observed in bread wheat (Triticum aestivum L.). The allele Glu-B1g* coding for 13* and 19* subunits found in spelt wheat was also detected in club wheat (Triticum compactum L.). Additionally, two alleles coding for LMW-GS, Glu-A3h and Glu-B3d, occurred with high frequencies in spelt, club and cultivated emmer wheat, whereas these were not found or present with very low frequencies in bread wheat. Our results strongly support the secondary origin hypothesis, namely European spelt wheat originated from hybridization between cultivated emmer and club wheat. This is also confirmed experimentally by the artificial synthesis of spelt through crossing between old European emmer wheat, T. dicoccum and club wheat, T. compactum.Communicated by H.F. Linskens  相似文献   

5.

Key message

Spelt wheat is a distinct genetic group to elite bread wheat, but heterosis for yield and protein quality is too low for spelt to be recommended as heterotic group for hybrid breeding in wheat.

Abstract

The feasibility to switch from line to hybrid breeding is currently a hot topic in the wheat community. One limitation seems to be the lack of divergent heterotic groups within wheat adapted to a certain region. Spelt wheat is a hexaploid wheat that can easily be crossed with bread wheat and that forms a divergent genetic group when compared to elite bread wheat. The aim of this study was to investigate the potential of Central European spelt as a heterotic group for Central European bread wheat. We performed two large experimental field studies comprising in total 43 spelt lines, 14 wheat lines, and 273 wheat–spelt hybrids, and determined yield, heading time, plant height, resistance against yellow rust, leaf rust, and powdery mildew, as well as protein content and sedimentation volume. Heterosis of yield was found to be lower than that of hybrids made between elite wheat lines. Moreover, heterosis of the quality trait sedimentation volume was negative. Consequently, spelt wheat does not appear suited to be used as heterotic group in hybrid wheat breeding. Nevertheless, high combining abilities of a few spelt lines with elite bread wheat lines make them interesting resources for pre-breeding in bread wheat. Thereby, the low correlation between line per se performance and combining ability of these spelt lines shows the potential to unravel the breeding value of genetic resources by crossing them to an elite tester.
  相似文献   

6.
Chlorotoluron is a selective phenylurea herbicide widely used for broad-leaved and annual grass weed control in cereals. Variation in the response to chlorotoluron (CT) was found in both hexaploid bread wheat (Triticum aestivum L.) and wild tetraploid wheat (Triticum dicoccoides KöRN.). Here, we describe the comparative mapping of the CT resistance gene (Su1) on chromosome 6B in bread and wild wheat using RFLP markers. In bread wheat, mapping was based on 58 F4 single-seed descent (SSD) plants of the cross between a genotype sensitive to chlorotoluron, ‘Chinese Spring’ (CS), and a resistant derivative, the single chromosome substitution line, CS (‘Cappele-Desprez’ 6B) [CS (CAP6B). In T dicoccoides, mapping was based on 37 F2 plants obtained from the cross between the CT-susceptible accession B-7 and the resistant accession B-35. Nine RFLP probes spanning the centromere were chosen for mapping. In bread wheat Su1 was found to be linked to α-Amy-1 (9.84 cM) and Xpsr371 (5.2 cM), both on the long arm of 6B, and Nor2 (2.74 cM) on the short arm. In wild wheat the most probable linkage map was Nor2-Xpsr312-Su1-Pgk2, and the genetic distances between the genes were 24.8cM, 5.3cM, and 6.8cM, respectively. These results along with other published map data indicate that the linear order of the genes is similar to that found in T. aestivum. The results of this study also show that the Su1 gene for differential response to chlorotoluron has evolved prior to the domestication of cultivated wheat and not in response to the development and use of chemicals.  相似文献   

7.
To investigate the origin of European spelt (Triticum spelta L., genome AABBDD) and its relation to bread wheat (Triticum aestivum L., AABBDD), we analysed an approximately 1-kb sequence, including a part of the promoter and the coding region, of the high-molecular-weight (HMW) glutenin B1-1 and A1-2 subunit genes in 58 accessions of hexa- and tetraploid wheat from different geographical regions. Six Glu-B1-1 and five Glu-A1-2 alleles were identified based on 21 and 19 informative sites, respectively, which suggests a polyphyletic origin of the A- and B-genomes of hexaploid wheat. In both genes, a group of alleles clustered in a distinct, so-called beta subclade. High frequencies of alleles from the Glu-B1-1 and Glu-A1-2 beta subclades differentiated European spelt from Asian spelt and bread wheat. This indicates different origins of European and Asian spelt, and that European spelt does not derive from the hulled progenitors of bread wheat. The conjoint differentiation of alleles of the A- and B-genome in European spelt suggests the introgression of a tetraploid wheat into free-threshing hexaploid wheat as the origin of European spelt.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J. Dvorak  相似文献   

8.
A wheat (Triticum aestivum L.) line 4844 with superior numbers of florets and grains per spike was derived from the cross between Fukohokomugi wheat and Agropyron cristatum (L.) Gaertn. In order to determine the genetic control of floret and kernel number per spike in this line, chromosome addition and substitution lines that were derived from line 4844 were characterized by means of in situ hybridization, microsatellite (SSR), and gliadin analyses. Genomic in situ hybridization analysis with biotinylated P genomic DNA of A. cristatum as a probe demonstrated that the increased number of florets and grains in a spike was associated with the introgression of an A. cristatum chromosome. Fluorescence in situ hybridization, using a repetitive sequence, pAs1, derived from Aegilops squarrosa L., indicated the replacement of chromosome 6D of wheat in the wheat-A. cristatum chromosome substitution lines. This was confirmed by microsatellite analyses with wheat SSR markers specific for chromosome 6D, suggesting that the A. cristatum chromosome was homoeologous to group 6 and was therefore designated as 6P. This conclvsion was further confirmed by amplification using EST-SSR markers and gliadin analysis. The increased number of florets and kernels within a spike of the wheat-A. cristatum hybrids thus was controlled by gene(s) located on A. cristatum chromosome 6P.  相似文献   

9.
10.
High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20–40 nm; maximum initial velocity, 26–29 nmol g−1 fresh weight h−1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain.  相似文献   

11.
 Homoeologous pairing at metaphase I was analyzed in standard-type, ph2b, and ph1b hybrids of Triticum aestivum (common, bread or hexaploid wheat) and T. sharonense in order to establish the homoeologus relationships of T. sharonense chromosomes to hexaploid wheat. Chromosomes of both species, and their arms, were identified by C-banding. Normal homoeologous relationships for the seven chromosomes of the Ssh genome, and their arms, were revealed, which implies that no apparent chromosome rearrangement occurred in the evolution of T. sharonense relative to wheat. All three types of hybrids with low-, intermediate-, and high-pairing level showed preferential pairing between A-D and B-Ssh. A close relationship of the Ssh genome to the B genome of bread wheat was confirmed, but the results provide no evidence that the B genome was derived from T. sharonense. Data on the pairing between individual chromosomes of T. aestivum and T. sharonense provide an estimate of interspecific homoeologous recombination. Received: 14 October 1996 / Accepted: 25 October 1996  相似文献   

12.
 Seed proteins of 28 spelt cultivars (Triticum spelta L.), 16 cross combinations between spelt forms or between spelt and English winter wheat cultivars, and ten winter wheat varieties (Triticum aestivum L.) were analysed by SDS (sodium dodecyl sulphate)-PAGE (polyacrylamide-gel electrophoresis). Different wheat types were chosen for distinct purposes: five popular German wheat cultivars were used for a comparison of wheat and spelt protein band patterns, two of them are old varieties (‘Kanzler’ and ‘Jubilar’) and one is a modern wheat standard (‘Orestis’); five English winter wheat varieties with short straw were used for the crosses with spelt cultivars to improve seed yield and especially the lodging resistance of spelt. The objectives of these studies were the adaptation of existing SDS-PAGE methods, which have been successfully applied in other crops, for the analysis of seed proteins in spelt, and the characterization and differentiation of spelt varieties from corresponding cross combinations with other spelt forms or with winter wheat cultivars using gel-electrophoretic methods (SDS-PAGE). Considerable differences in protein band patterns were found between spelt and winter wheat varieties, especially in three distinct lanes of the electropherogrammes where the molecular weights range from 40 to 49 , 53 to 62 and 74 to 115 kDa. Spelt cross combinations, and especially crosses between spelt and winter wheat cultivars, were easily distinguishable particularly after a preceding extraction in chlorethanol. Received: 4 December 1996 1 / Accepted: 6 December 1996  相似文献   

13.
A betA gene encoding choline dehydrogenase from Escherichia coli (E. coli) was transformed into wheat (Triticum aestivum L.) via Agrobacterium-mediated transformation. PCR amplification and Southern blotting confirmed the existence of transgene in transformed plants and their progeny. Levels of expression of the betA gene varied among the different transgenic lines based on RT-PCR analysis. Under salt stress conditions, transgenic lines L2 and L3 had higher levels of glycine betaine and chlorophyll, lower Na+/K+ ratios and solute potential, and less cell membrane damage. These lines also retained moderately higher photosynthesis rates and more vigorous growth than the wild-type line at 200 mM NaCl. In a field trial in a high salt field, transgenic lines L2 and L3 had higher germination rates, more tillers and higher grain yields in comparison to the wild-type plants. This suggested that the transgenic plants were more tolerant to salt stress and have potential for breeding salt-tolerant wheat.  相似文献   

14.
The wild diploid wheat (Triticum urartu Thum. ex Gandil.) is a potential gene source for wheat breeding, as this species has been identified as the A-genome donor in polyploid wheats. One important wheat breeding trait is bread-making quality, which is associated in bread wheat (T. aestivum ssp. aestivum L. em. Thell.) with the high-molecular-weight glutenin subunits. In T. urartu, these proteins are encoded by the Glu-A1x and Glu-A1Ay genes at the Glu-A u 1 locus. The Glu-A1x genes of 12 Glu-A u 1 allelic variants previously detected in this species were analysed using PCR amplification and sequencing. Data showed wide diversity for the Glu-A1x alleles in T. urartu, which also showed clear differences to the bread wheat alleles. This variation could enlarge the high-quality genetic pool of modern wheat and be used to diversify the bread-making quality in durum (T. turgidum ssp. durum Desf. em. Husn.) and common wheat.  相似文献   

15.
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important wheat diseases worldwide. The basis for wheat powdery mildew resistance breeding consists of screening diversified host genetic resources with a range of races of the powdery mildew pathogen. Spelt wheat (Triticum aestivum ssp. spelta 2n = 6x = 42, AABBDD) is a close relative of common wheat (T. aestivum ssp. aestivum) and contains several known disease resistance genes, including Pm1d, Yr5, and Lr65. Here, we report the identification and mapping of a powdery mildew resistance gene in spelt wheat cultivar Hubel, which was introduced to China from Europe and is resistant to Chinese Bgt isolate E09 at the seedling stage. Genetic analysis of a recombinant inbred line population derived from a cross of Hubel and a susceptible early maturing mutant line indicated that Hubel possessed a recessive powdery mildew resistance gene (temporarily designated MlHubel). Markers linked to MlHubel were identified using bulked segregant analysis, simple sequence repeat, and expressed sequence tag-derived sequence tagged site methods. The linked markers were physically located on wheat chromosome 2D. Comparative genomic analysis indicated that the genetic interval covering MlHubel in wheat is highly colinear with the corresponding regions on Brachypodium distachyon chromosome 5 and Oryza sativa chromosome 4. Accordingly, the genetic map of MlHubel was established in comparison with B. distachyon 5L and O. sativa 4L, with the closest marker Xgwm265 being 0.4 cM from MlHubel. The identification of the recessive powdery mildew gene in spelt wheat suggests the potential of this accession along with its closely linked markers in breeding for resistance to powdery mildew.  相似文献   

16.
Male sterility induced by the cytoplasm of Triticum timopheevii Zhuk. has shown potential for hybrid seed production in common wheat (Triticum aestivum L.). As hybrids produced by this method are often partially sterile, fertility restoration is crucial for implementing this technology in breeding practice. Several restorer genes were identified, of which Rf3 is one of the most effective genes for achieving restoration. Previous studies located Rf3 on chromosome 1B in common and spelt wheat. However, the distribution of Rf3 in these taxa remained unclear. In the present study, we genetically mapped Rf3 using a BC1 population derived from CMS-Sperber and the restorer line Primepi (N = 193). After marker validation in four independent BC1 populations and a diversity panel, we evaluated the distribution of Rf3 in 524 common wheat and 30 European spelt genotypes. In the mapping population, the SNP marker IWB72107 cosegregated with Rf3, whereas IWB14060 was mapped 2.0 cM distal on chromosome 1BS. Surveying the linkage between IWB72107 and Rf3 in the four validation populations revealed map distances that ranged from 0.4 to 2.3 cM. Validation of IWB72107 in the diversity panel showed that it is suitable for marker-assisted selection and related applications. Using this marker, we estimated that 8.8% of the common wheat lines and 66.7% of the spelt cultivars carried the restoring Rf3 allele. We propose that Rf3 explains the restoration capacity of a large proportion of European common wheat lines.  相似文献   

17.
The influence of fungi on seedling emergence of naked and hulled spelt (Triticum spelta L.) and winter wheat (Triticum aestivum L.) was investigated. Seeds were sown in flat trays and placed in a growth chamber under stress conditions (low temperature and water logging) for four weeks, followed by favourable growth conditions. At weekly intervals, 150 seeds were removed, surface sterilized, and investigated for fungi. Pythium aristosporum Vanterpool, a causal agent of damping-off, was found to be best adapted to the unfavourable conditions and to be a major cause of pre-emergence damping-off. The frequency of seed-borne fungi decreased during the stress period, whereas soil-borne fungi survived and could be isolated from seeds and glumes in the following period with more favourable growth conditions. Seedlings from hulled seeds of spelt emerged more frequently than from naked kernels of spelt and both emerged at a higher rate than from seeds of winter wheat. This is good evidence that glumes protect seeds against fungal colonization and therefore increase the fitness of spelt under unfavourable germinating conditions.  相似文献   

18.
Fluorescence in situ hybridization (FISH) is a useful tool for physical mapping of chromosomes and studying evolutionary chromosome rearrangements. Here we report a robust method for single-copy gene FISH for wheat. FISH probes were developed from cDNA of cytosolic acetyl-CoA carboxylase (ACCase) gene (Acc-2) and mapped on chromosomes of bread wheat, Triticum aestivum L. (2n?=?6x?=?42, AABBDD), and related diploid and tetraploid species. Another nine full-length (FL) cDNA FISH probes were mapped and used to identify chromosomes of wheat species. The Acc-2 probe was detected on the long arms of each of the homoeologous group 3 chromosomes (3A, 3B, and 3D), on 5DL and 4AL of bread wheat, and on homoeologous and nonhomoeologous chromosomes of other species. In the species tested, FISH detected more Acc-2 gene or pseudogene sites than previously found by PCR and Southern hybridization analyses and showed presence/absence polymorphism of Acc-2 sequences. FISH with the Acc-2 probe revealed the 4A–5A translocation, shared by several related diploid and polyploid species and inherited from an ancestral A-genome species, and the T. timopheevii-specific 4At–3At translocation.  相似文献   

19.
Variability of the beta-amylase gene in bread wheat, artificial amphidiploids, and derived introgression wheat lines was analyzed. Variation in homeologous beta-amylase sequences caused by the presence of MITE (Miniature Inverted-Repeat Transposable Element) and its footprint has been identified in bread wheat. The previously unknown location of MITE in Triticum urartu and T. aestivum L. beta-amylase gene has been found. These species have a MITE sequence in the third intron of beta-amylase, as opposed to Aegilops comosa and a number of other Triticeae species, which have it in the fourth intron. These two MITEs from Ae. comosa and T. aestivum were shown to have low identity scores. Miosa, an artificial amphidiploid, which has the M genome from Ae. comosa was shown to lose the MITE sequences. This loss might be caused by genomic shock due to allopolyploidization.  相似文献   

20.
Fifty-two winter wheat (Triticum aestivum L.), nine spring wheat, and 20 spelt (Triticum spelta L.) lines representing part of the European breeding germplasm, were assayed for RFLPs (restriction fragment length polymorphisms) with 56 wheat DNA clones and two barley cDNA clones. Objectives of this study were to (1) determine the level of variation for RFLPs in the wheat and spelt breeding lines, (2) characterize the genetic diversity within the European winter wheat germplasm, and (3) evaluate the usefulness of RFLP markers for pedigree analysis and the grouping of wheat and spelt lines of various origins. Seventy-three of the 166 RFLP loci detected with 58 probes and one restriction enzyme were polymorphic for the 81 lines. The percentage of polymorphic loci was greatest for the B genome (58%) and smallest for the D genome (21%). Among the 81 lines, 271 different RFLP bands were detected. RFLP band frequencies of the winter wheat lines differed considerably (0.5) from those of the spring wheat lines at five loci, and from those of the spelt lines at 17 loci. Eight cultivars that had a major impact as progenitors on the development of improved winter wheat cultivars accounted for 93% of the observed RFLP bands in winter wheat. Genetic distance (GD) estimates between two lines ranged between 0.01 and 0.21. Mean GD estimates within winter wheat (0.083), within spring wheat (0.108) and within spelt (0.096) were smaller than between spring and winter wheat (0.114), and greatest between winter wheat and spelt (0.132) and spring wheat and spelt (0.148). Principal coordinate analysis performed on GD estimates revealed a clear separation of wheat and spelt germplasm. Novel spelt lines with various proportions of wheat germplasm were positioned between wheat and traditional spelt lines. The spring wheat lines formed a distinct group at the periphery of the distribution of the winter wheat lines. Subgroupings of the winter wheat lines according to the cluster analysis were in good agreement with their origin, and lines with common ancestors were grouped together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号