首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Pythium indigoferae and Pythium irregulare, identified based on morphological and physiological characteristics, were isolated from necrotic roots, crown tissues and the rhizosphere of apple trees in Tunisia from 23 apple orchards in spring and autumn 2007–2009. The virulence assays on excised twigs, using different Pythium species isolated demonstrated that these oomycetes were pathogenic on the Anna, Lorka and Meski varieties and the MM106 rootstock. However, the biggest lesion area was noted on MM106 rootstock. Thus, it appeared that this rootstock is more susceptible to Pythium infections than Anna, Meski and Lorka apple varieties. Furthermore, it is important to note that in vitro tests showed that P. indigoferae seems to be more virulent than P. irregulare.  相似文献   

2.
Soil solarization in combination with introduction of biocontrol agents (BCA) was evaluated as a potential disease management strategy for tomato damping-off caused by Pythium spp. A rifampicin resistant Pseudomonas fluorescens strain (PfT-8) and a carbendazim resistant Trichoderma harzianum strain (ThM-1) were introduced into soil following solarization. Tomato seeds were planted into treated field plots. The influence of soil solarization and application of biocontrol agents on damping-off incidence, plant biomass, rhizosphere population of introduced antagonists, and native Pythium spp. was assessed by two consecutive field trials. Damping-off incidence was significantly reduced in solarized plots compared to control. Soil inoculation of biocontrol agents into solarized plots resulted in the highest suppression of damping-off incidence (PfT-8 up to 92%; ThM-1 up to 83%), and increase in plant biomass (PfT-8 up to 66%; ThM-1 up to 48%) when compared to un-solarized control plots. Rhizosphere population of introduced biocontrol agents gradually increased (PfT-8 up to 102% and ThM-1 up to 84%) in solarized soils when compared to unsolarized control. The population of Pythium spp in rhizosphere soil was reduced up to 55% in solarized plots; whereas, application of BCA to solarized soils reduced the rhizosphere population of Pythium spp. by 86 and 82% in P. fluorescens and T. harzianum applied plots respectively.  相似文献   

3.
Two Pythium-infested soils were used to compare the wheat root and rhizosphere soil microbial communities from plants grown in the field or in greenhouse trials and their stability in the presence of biocontrol agents. Bacteria showed the highest diversity at early stages of wheat growth in both field and greenhouse trials, while fungal diversity increased later on, at 12 weeks of the crop cycle. The microbial communities were stable in roots and rhizosphere samples across both soil types used in this study. Such stability was also observed irrespective of the cultivation system (field or greenhouse) or addition of biocontrol coatings to wheat seeds to control Pythium disease (in this study soil infected with Pythium sp. clade F was tested). In greenhouse plant roots, Archaeorhizomyces, Debaryomyces, Delftia, and unclassified Pseudeurotiaceae were significantly reduced when compared to plant roots obtained from the field trials. Some operational taxonomic units (OTUs) represented genetic determinants clearly transmitted vertically by seed endophytes (specific OTUs were found in plant roots) and the plant microbiota was enriched over time by OTUs from the rhizosphere soil. This study provided key information regarding the microbial communities associated with wheat roots and rhizosphere soils at different stages of plant growth and the role that Paenibacillus and Streptomyces strains play as biocontrol agents in supporting plant growth in infested soils.  相似文献   

4.
Fusarium oxysporum, Pythiu-m ultimum, and Rhizoctonia solani were isolated from the basal stems of diseased alstroemeria showing symptoms of dark brown stripes along leaf margins, leaf chlorosis, plant wilting, browning or rotting of basal stem, rhizome, and storage and fibrous roots. The pathogen isolated most frequently was Fusarium spp. (40.5 % of plants examined). Pythium spp. and R. solani were isolated less frequently (5.5 % and 6.8 % of plants examined, respectively). F. oxysporum caused the highest mortality in alstroemeria when rhizomes were grown in unsterilized soil-less mix medium. This is the first report in North America of a root-rot disease complex affecting alstroemeria.  相似文献   

5.
Infection of citrus seedlings by Tylenchulus semipenetrans was shown to reduce subsequent infection of roots by Phytophthora nicotianae and to increase plant growth compared to plants infected by only the fungus. Hypothetical mechanisms by which the nematode suppresses fungal development include nutrient competition, direct antibiosis, or alteration of the microbial community in the rhizosphere to favor microorganisms antagonistic to P. nicotianae. A test of the last hypothesis was conducted via surveys of five sites in each of three citrus orchards infested with both organisms. A total of 180 2-cm-long fibrous root segments, half with a female T. semipenetrans egg mass on the root surface and half without, were obtained from each orchard site. The samples were macerated in water, and fungi and bacteria in the suspensions were isolated, quantified, and identified. No differences were detected in the numbers of microorganism species isolated from nematode-infected and uninfected root segments. However, nematode-infected root segments had significantly more propagules of bacteria at all orchard sites. Bacillus megaterium and Burkholderia cepacia were the dominant bacterial species recovered. Bacteria belonging to the genera Arthrobacter and Stenotrophomonas were encountered less frequently. The fungus community was dominated by Fusarium solani, but Trichoderma, Verticillum, Phythophthora, and Penicillium spp. also were recovered. All isolated bacteria equally inhibited the growth of P. nicotianae in vitro. Experiments using selected bacteria, T. semipenetrans, and P. nicotianae, alone or in combination, were conducted in both the laboratory and greenhouse. Root and stem fresh weights of P. nicotianae-infected plants treated with T. semipenetrans, B. cepacia, or B. megaterium were greater than for plants treated only with the fungus. Phytophthora nicotianae protein in roots of fungus-infected plants was reduced by nematodes (P ≤ 0.001), either alone or in combination with either bacterium. However, treatment with bacteria did not affect P. nicotianae development in roots. The results suggest different mechanisms by which T. semipenetrans, B. cepacia, and B. megaterium may mitigate virulence of P. nicotianae.  相似文献   

6.
Samples of tomato, lettuce and cucumber submitted for diagnosis to the Plant Protection Centre at the Norwegian Crop Research Institute and samples of soil, water and cucumber collected from greenhouses employing hydroponic cultures were examined for the occurrence of Pythium spp. and Phytophthora spp. Two species of Phytophthora and 16 species of Pythium were identified. Phytophthora cryptogea was found on tomato and lettuce. Phytophthora nicotianae was found on tomato fruit. Phytophthora was not found on cucumbers. Pythium irregulare and Pythium group F were the two most commonly found Pythium species in hydroponically cultivated cucumbers. A pathogenicity test with 56 isolates was performed on cucumber seedlings. The most aggressive species were Pythium aphanidermatum, P. irregulare, Pythium paroecandrum and Pythium ultimum.  相似文献   

7.
S. Nemec 《Mycopathologia》1970,41(3-4):331-346
A qualitative and quantitative study of the fungi associated with apparently healthy and root rot-diseased strawberry main roots was made during a 1-year period. Eighty-one genera were isolated from lesions and stele segments of diseased roots, and tips and segments 5–6 cm from the tip of apparently healthy roots. A diverse mycoflora was isolated from each segment of the root. However, each segment had a typical dominant mycoflora, indicating that a changing mycoflora is associated with the root as it passes from a healthy to a diseased condition.Pythium spp. andRhizoctonia Spp. accounted for 25.09 and 5.67 percent, respectively, of the isolates from Surecrop lesions, and 4.96 and 25.92 percent, respectively, of the isolates from Cyclone lesions.  相似文献   

8.
The pathogenicity and growth rate in vivo were assessed on 27 isolates of Pythium spp. recovered from cavity spot lesions on carrots grown in various parts of northwest France. Polyacrylamide gel electrophoresis of isoesterases was used to identify the Pythium spp. involved. Slow-growing isolates were more aggressive than fast-growing ones when inoculated on carrot tap roots. Isoesterase patterns identified the slow-growing isolates as P. violae and P. sulcatum; P. ultimum and P. intermedium were identified among the less aggressive fast-growing isolate group, in which some isolates were also classed as P. sylvaticum or P. irregulare, which have similar electrophoretic profiles. The incidence of Pythium spp. associated with the disease in France is discussed in regard to cavity spot in other countries.  相似文献   

9.
The influences of Gaeumannomyces graminis var. tritici (which causes take-all of wheat), Rhizoctonia solani AG-8 (which causes rhizoctonia root rot of wheat), Pythium irregulare, P. aristosporum, and P. ultimum var. sporangiiferum (which cause pythium root rot of wheat) on the population dynamics of Pseudomonas fluorescens 2-79 and Q72a-80 (bicontrol strains active against take-all and pythium root rot of wheat, respectively) in the wheat rhizosphere were examined. Root infection by either G. graminis var. tritici or R. solani resulted in populations of both bacterial strains that were equal to or significantly larger than their respective populations maintained on roots in the absence of these pathogens. In contrast, the population of strain 2-79 was significantly smaller on roots in the presence of any of the three Pythium species than on noninfected roots and was often below the limits of detection (50 CFU/cm of root) on Pythium-infected roots after 40 days of plant growth. In the presence of either P. aristosporum or P. ultimum var. sporangiiferum, the decline in the population of Q72a-80 was similar to that observed on noninfected roots; however, the population of this strain declined more rapidly on roots infected by P. irregulare than on noninfected roots. Application of metalaxyl (which is selectively inhibitory to Pythium spp.) to soil naturally infestated with Pythium spp. resulted in significantly larger rhizosphere populations of the introduced bacteria over time than on plants grown in the same soil without metalaxyl. It is apparent that root infections by fungal pathogens may either enhance or depress the population of fluorescent pseudomonads introduced for their control, with different strains of pseudomonads reacting differentially to different genera and species of the root pathogens.  相似文献   

10.
Abstract

Root rot disease is very common in the bean, soybean, faba bean and pea plants growing areas in Samsun province. Disease incidence and severity were detected the highest at 93.8% and 55.4% in the bean growing area, and the lowest at 64.0% and 24.3% in the faba bean growing area respectively. In this study, a total of 2714 fungal isolates were obtained from some legume plants and soil samples. The most common fungi isolated from root and soil samples were Fusarium spp., multinucleate Rhizoctonia (MNR), binucleate Rhizoctonia (BNR) and Pythium spp. respectively. Fusarium spp. were isolated at high rates from all the examined areas. MN Rhizoctonia and BN Rhizoctonia were isolated both from inner and coastal areas of the province, whereas Pythium spp. were isolated in costal areas, except for the Vezirköprü district which is situated in the inner area. When looking at the interactions among pathogens causing root rot, it was found the great majority of the samples (30.4%) isolated both Fusarium spp. and MNR-BNR group fungi, whereas Fusarium spp. and Pythium spp. were isolated together from 10.9% of the samples and MNR-BNR and Pythium spp. from only 1.5% of the samples.  相似文献   

11.
Several lines of circumstantial evidence collectively indicated that poor early growth of apple (‘replant disease’) might be associated with the effects of soil-borne pythiaceous fungi. This hypothesis was supported by pathogenicity tests. All isolates tested of P. sylvaticum and certain isolates of seven other Pythium spp. significantly reduced the growth of apple seedlings. The growth reductions caused by certain Pythium isolates were of comparable magnitude to the growth increases occurring after chloropicrin-fumigation of apple orchard soils. The Pythium isolates most virulent to apple were of low virulence to a clonal cherry rootstock. Reappraisal of the nature of the disease as a non-specific soil malaise is consistent with established features of the pathology of Pythium spp. The disease, however, is an ill-defined ‘poor growth phenomenon’ with no diagnostic symptoms and conclusive evidence that Pythium spp. are widely causal is likely to be elusive.  相似文献   

12.
Evidence for biological nature of the grape replant problem in California   总被引:2,自引:0,他引:2  
Westphal  Andreas  Browne  Greg T.  Schneider  Sally 《Plant and Soil》2002,242(2):197-203
A bioassay was developed to investigate causes of grape replant problems under controlled conditions. Soils were collected from methyl bromide-fumigated and non-fumigated plots at a site cleared from a 65-year-old grape vineyard (Vitis vinifera cv. Thompson seedless) at Parlier, CA. Subsamples of the non-fumigated soil were either left non-treated, subjected to autoclaving (twice 45 min), or heating at 40, 50, 60, 70, 80 or 90 °C for 30 min. Subsequently, the samples were placed in 120-mL pots, planted with rooted hardwood grape cuttings (V. vinifera, cv. Carignane) and placed in a greenhouse or growth chamber. Three months after transplanting, vines from non-treated or 40 °C-treated soil had lower shoot weights and densities of healthy lateral roots than vines from the other treatments. Pythium spp. were isolated from 45 to 55% of the plated root segments from vines grown in non-treated, or soil that had been heated at 40 or 50 °C but were not detected in roots from soil given other treatments. Egg masses of root-knot nematode, Meloidogyne spp., were produced on roots from non-treated or heated at 40 °C soil, but no egg masses were detected on roots of the other treatments. In another test with the same soils, remnant roots from non-fumigated or pre-plant methyl bromide-fumigated soil were extracted and amended to non-fumigated soil, soil from fumigated field plots, soil fumigated in a small container, or autoclaved potting mix. The transfer of old vine roots from non-fumigated field soil resulted in incidence of Pythium spp. on grape assay roots, but there was no measurable effect of the transfer on growth and health of the bioassay plant roots. The results of the bioassays indicate that grape replant problem at the California site had biological causes. The bioassay approach may aid in future determinations of the etiology of grape replant problems.  相似文献   

13.
Summary Pythium spp. were more abundant in the southerly and more temperature regions of the barley growing region of South Australia than in the drier and hotter north. Populations were more abundant in the top 10 cm than in the 10 to 20 cm soil zone. Eleven species ofPythium were identified from barley crops.P. irregulare appeared to be the most abundant and was one of the most pathogenic species on barley.P. volutum was also highly pathogenic; it had not been recorded in South Australia before. A factorial experiment using ninePythium spp. and four levels of soil water indicated that unlike other species,P. irregulare, P. volutum andP. graminicolum were most pathogenic in soils with a water content close to field capacity. A factorial experiment usingP. irregulare at four levels of soil water and six inoculum levels showed that inhibition of growth in barley seedlings byP. irregulare increased as the level of water in the soil increased. The experiments support the hypothesis that inhibition of growth of barley seedlings byPythium spp. is most severe in the southerly parts of the barley growing area of South Australia particularly where there is a combination of high soil water and high population densities.  相似文献   

14.
Microbial destabilization induced by pathogen infection has severely affected plant quality and output, such as Anoectochilus roxburghii, an economically important herb. Soft rot is the main disease that occurs during A. roxburghii culturing. However, the key members of pathogens and their interplay with non-detrimental microorganisms in diseased plants remain largely unsolved. Here, by utilizing a molecular ecological network approach, the interactions within bacterial communities in endophytic compartments and the surrounding soils during soft rot infection were investigated. Significant differences in bacterial diversity and community composition between healthy and diseased plants were observed, indicating that the endophytic communities were strongly influenced by pathogen invasion. Endophytic stem communities of the diseased plants were primarily derived from roots and the root endophytes were largely derived from rhizosphere soils, which depicts a possible pathogen migration image from soils to roots and finally the stems. Furthermore, interactions among microbial members indicated that pathogen invasion might be aided by positively correlated native microbial members, such as Enterobacter and Microbacterium, who may assist in colonization and multiplication through a mutualistic relationship in roots during the pathogen infection process. Our findings will help open new avenues for developing more accurate strategies for biological control of A. roxburghii bacterial soft rot disease.  相似文献   

15.
In order to evaluate the suitability ofAzospirillum spp. as a crop inoculant in temperate regions, the natural occurrence, distribution and survival ofAzospirillum after seed inoculation in Belgian agricultural soils was studied.Azospirillum was present in most of the fields examined, but concentrations never exceeded 1000 cfu per g soil or per g roots. Under field conditions none of the known species was found to be localized inside the roots of barley, wheat, rye, maize or grasses. Also, the distribution ofA. brasilense SpBr 14 within the root system of hydroponic-grown wheat was studied by immunofluorescence. From the rhizosphere samples of the field crops investigated, a number of microaërophilic, diazotrophic bacteria were isolated and identified asA. lipoferum, found only on maize and grass roots, andA. brasilense, present under all crops. In contrast toA. brasilense, A. lipoferum was able to use different amino-acids and some derivatives as sole carbon and nitrogen sources. Use of a peat-based seed inoculant resulted in the establishment of theAzospirillum spp. in the rhizosphere of field-grown winter barley and winter wheat. The established population survived during winter without appreciable change in numbers, but there was no indication of active growth during spring or summer.  相似文献   

16.
Amendment of orchard soil with low-glucosinolate Brassica napus (rape) seed meal (RSM) suppresses infection of apple roots by Rhizoctonia solani but increases incidence of Pythium spp. infection. Following incorporation of Brassica sp. seed meals, soils were monitored for changes in populations of selected saprophytic and plant pathogenic microorganisms. When conducted in pasteurized soil, which possessed high numbers of Bacillus spp. and lower than detectable numbers of Streptomyces spp., RSM amendment did not provide control of R. solani. Populations of streptomycetes in RSM-amended soil increased to stable levels >20-fold higher than in non-amended soil. Disease suppressiveness was restored to pasteurized RSM-amended soil by adding any of several Streptomyces strains. Maximal rates of nitrification in orchard soil, determined by nitric oxide emission, were observed within two weeks following RSM amendment and inhibition of nitrification via application of nitrapyrin abolished the capacity of RSM to suppress R. solani infection of apple roots when seedlings were planted one day after soil amendment. Apple seedling mortality and Pythium spp. root infection were highest for seedlings planted immediately following incorporation of B. napus cv. Athena RSM, particularly when meal was added in a flake rather than powder form. Lower infection frequencies were observed for seedlings planted four weeks after RSM incorporation, even for soil in which densities of culturable Pythium spp. had not declined. Our results demonstrate that suppression of Rhizoctonia root rot in response to RSM amendment requires the activity of the resident soil microbiota and that initial disease control is associated with the generation of nitric oxide through the process of nitrification.  相似文献   

17.
A procedure that consumes less screening time was developed for screening chickpea rhizosphere-competent bacteria for suppression of the chickpea pathogenic fungi Fusarium oxysporum f. sp. ciceri, Rhizoctonia bataticola and Pythium sp. Of the 478 bacteria obtained by random selection of the predominant, morphologically distinct colonies, 386 strains that effectively colonize chickpea roots could be divided broadly into three different groups. The first group consisted of 44 good chickpea rhizosphere colonizers with 107 to 108 colony-forming units (CFU)/g root; the second group consisted of 253 medium chickpea rhizosphere colonizers with 104 to 106 CFU/g root; and the third group consisted of 89 poor chickpea rhizosphere colonizers with 100 (nondetectable) to 103 CFU/g root. Forty-four Rifr strains from the first group of good chickpea rhizosphere colonizers were further screened for their in vitro biocontrol activity against F. oxysporum f. sp. ciceri, R. bataticola, and Pythium sp. One bacterial strain was selected for further work because of its unique ability to inhibit all three fungi and its good chickpea rhizosphere colonization ability. This is the first report of a single biocontrol bacterium active against three most devastating pathogenic fungi of chickpea. In a greenhouse test, chickpea seed bacterization with P. fluorescens NBRI1303 increased the germination of seedlings by 25%, reduced the number of diseased plants by 45%, compared with nonbacterized controls. Increases in seedling dry weight, shoot length, and root length ranged from 16% to 18%. Significant growth increases in shoot length, dry weight, and grain yield, averaging 11.59%, 17.58%, and 22.61% respectively above untreated controls, were attained in field trials in Agra and Jhansi. A rifampicin-resistant mutant P. fluorescens NBRI1303R of the P. fluorescens NBRI1303, used to monitor chickpea root colonization, confirmed the rapid and aggressive colonization by the bacterium, making it a potential biocontrol agent against chickpea phytopathogenic fungi. The results, demonstrating an increase in the efficiency of screening and detection of plant beneficial strains, should greatly benefit future studies. Received: 23 December 1996 / Accepted: 28 January 1997  相似文献   

18.
Plant roots secrete a significant portion of their assimilated carbon into the rhizosphere. The putative sugar transporter SWEET2 is highly expressed in Arabidopsis roots. Expression patterns of SWEET2–β‐glucuronidase fusions confirmed that SWEET2 accumulates highly in root cells and thus may contribute to sugar secretion, specifically from epidermal cells of the root apex. SWEET2–green fluorescent protein fusions localized to the tonoplast, which engulfs the major sugar storage compartment. Functional analysis of SWEET2 activity in yeast showed low uptake activity for the glucose analog 2‐deoxyglucose, consistent with a role in the transport of glucose across the tonoplast. Loss‐of‐function sweet2 mutants showed reduced tolerance to excess glucose, lower glucose accumulation in leaves, and 15–25% higher glucose‐derived carbon efflux from roots, suggesting that SWEET2 has a role in preventing the loss of sugar from root tissue. SWEET2 root expression was induced more than 10‐fold during Pythium infection. Importantly, sweet2 mutants were more susceptible to the oomycete, showing impaired growth after infection. We propose that root‐expressed vacuolar SWEET2 modulates sugar secretion, possibly by reducing the availability of glucose sequestered in the vacuole, thereby limiting carbon loss to the rhizosphere. Moreover, the reduced availability of sugar in the rhizosphere due to SWEET2 activity contributes to resistance to Pythium.  相似文献   

19.
Cocoyam is the second most important staple crop of Cameroon and root rot is a destructive disease of this plant. Pythium myriotylum (Pm), Fusarium solani (Fs), and Rhizoctonia solani (Rs) were isolated from the rhizosphere of root rot affected cocoyams and from the soil of a cocoyam experimental field plot temporarily devoid of same in Mamu, Cameroon. Pm was isolated from the above soil by the cocoyam leaf disc baits. Fs and Rs were also isolated from the same soils by the water dilution method and from the roots of diseased cocoyams but were always associated with mycelial growth of Pm. Pathogenicity of Pm and in combinations with Fs or Rs or Fs + Rs all developed cocoyam root rot disease (CRRD) symptoms on 3– and 7–month old cocoyam plantlets 2–7 days after inoculation. Symptoms included rotted roots and wilting with general chlorosis of inoculated plantlets. No symptoms of CRRD were noted on cocoyam plantlets inoculated with Fs, Rs, Fs + Rs, and distilled water. Results indicated that CRRD is not caused by several pathogens but only by Pm. Pm isolates from the soils and roots of diseased cocoyams and those maintained in the ROTREP laboratory have significantly bigger diameter of mycelial colony growth in 24 h–period at 31 °C on lima bean sucrose agar, V–8 juice sucrose agar, and potato sucrose agar than on potato dextrose agar and 2 % water agar. The cocoyam plantlets were raised axenically from tissue culture of explants in the laboratory.  相似文献   

20.
Tomato plants pre-colonised by the arbuscular mycorrhizal fungusGlomus mosseae showed decreased root damage by the pathogenPhytophthora nicotianae var.parasitica. In analyses of the cellular bases of their bioprotective effect, a prerequisite for cytological investigations of tissue interactions betweenG. mosseae andP. nicotianae v.parasitica was to discriminate between the hyphae of the two fungi within root tissues. We report the use of antibodies as useful tools, in the absence of an appropriate stain for distinguishing hyphae ofP. nicotianae v.parasitica from those ofG. mosseae inside roots, and present observations on the colonisation patterns by the pathogenic fungus alone or during interactions in mycorrhizal roots. Infection intensity of the pathogen, estimated using an immunoenzyme labelling technique on whole root fragments, was lower in mycorrhizal roots. Immunogold labelling ofP. nicotianae v.parasitica on cross-sections of infected tomato roots showed that inter or intracellular hyphae developed mainly in the cortex, and their presence induced necrosis of host cells, the wall and contents of which showed a strong autofluorescence in reaction to the pathogen. In dual fungal infections of tomato root systems, hyphae of the symbiont and the pathogen were in most cases in different root regions, but they could also be observed in the same root tissues. The number ofP. nicotianae v.parasitica hyphae growing in the root cortex was greatly reduced in mycorrhizal root systems, and in mycorrhizal tissues infected by the pathogen, arbuscule-containing cells surrounded by intercellularP. nicotianae v.parasitica hyphae did not necrose and only a weak autofluorescence was associated with the host cells. Results are discussed in relation to possible processes involved in the phenomenon of bioprotection in arbuscular mycorrhizal plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号