首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
染色体外环状DNA (extrachromosomal circular DNA, eccDNA)是一种真核生物染色体外的闭合环状DNA结构,长度和染色体起源具有较高异质性。ecc DNA这一名称目前主要指大小在数百kb以内的小分子染色体外环状DNA,包括micro DNA、小多分散环状DNA (small polydispersed circular DNA, spcDNA)以及其他未分类的小分子eccDNA等。高通量测序技术(high-throughput sequencing, HTS)是一种可以同时对百万条DNA分子进行序列测定的技术,又名新一代测序技术(next generation sequencing, NGS),具有高通量、高灵敏度、高准确度等优势。近年来高通量测序结合生物信息学分析技术不仅在揭示eccDNA染色体起源、分子结构、发生机制和潜在功能以及循环系统中的eccDNA分子特征研究等方面发挥了重要作用,而且推动了eccDNA在甲基化等表观遗传学方面的研究。生物信息学软件的发展和eccDNA分析算法的开发也对其研究提供了重要帮助。血浆以及尿液等液体活检常用体液样本中...  相似文献   

2.
染色体外环形DNA(extrachromosomal circular DNA,eccDNA)指来源于基因组DNA并游离于染色体之外的双链环状DNA分子,它在真核生物中普遍存在.eccDNA在数目、序列长度和基因组来源上存在很大差异,其功能也不尽相同,包括端粒可变延长、rDNA拷贝数维持、衰老、耐药性和肿瘤发生等,ec...  相似文献   

3.
秦丹  徐存拴 《遗传》2013,35(11):1253-1264
非编码DNA序列是指基因组中不编码蛋白质的DNA序列。这些序列可以结合调节因子、转录为功能性RNA、单独或协同地调节生理活动和病理过程。文章围绕基因表达调控作用, 总结了近几年非编码DNA序列的研究成果, 对其结构、功能和可能的作用机制进行了初步阐述, 介绍了目前鉴定非编码DNA序列中功能元件的计算方法和实验技术, 并对非编码DNA未来的研究进行了展望。  相似文献   

4.
非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD)是21世纪全球最重要的公共健康问题之一,也是我国愈来愈重要的慢性肝病问题。细胞间通讯在NAFLD病理进程中发挥重要作用。细胞外囊泡(extracellular vesicles, EVs)是近年来备受关注的细胞间通讯方式。EVs携带脂质、蛋白质、DNA、mRNA以及非编码RNA等作为信号分子在细胞间的物质和信息交流中起重要作用,参与了多个生理病理过程。目前细胞外囊泡在非酒精脂肪肝发病机制及诊断治疗中的作用方面的研究非常有限,但初步研究显示, EVs在NAFLD病程发展中发挥重要作用。因此,该文重点关注EVs参与NAFLD病程机制研究,并对其在NAFLD防治中的潜在诊疗价值作简要综述。  相似文献   

5.
细胞中DNA甲基化和microRNA(miRNA)相互影响,并共同调控着下游靶基因的表达活性,在细胞生长代谢、免疫、肿瘤和心血管疾病等生理和病理过程中发挥重要作用。首先简要介绍DNA甲基化与miRNA的概况,然后分析了miRNA调控下的DNA甲基化改变,探讨了DNA甲基化影响miRNA的表达活性变化,并归纳了miRNA与DNA甲基化之间的反馈调控关系;最后对DNA甲基化和miRNA的应用前景进行了简单探讨。研究DNA甲基化与miRNA间的网络调控关系,可为表观调控机制在理论和实践中的深入研究和应用提供参考。  相似文献   

6.
近日,来自美国弗吉尼亚大学和北卡罗来纳大学的科学家鉴定出了一种新的DNA类型.这是一种存在于染色体外的小型环状非重复性序列,在小鼠和人类的体细胞中广泛分布.这种类型的DNA被命名为微小DNA(micro DNA),长约200~400个碱基对.与其他种类的染色体外环形DNA(extra-chromosomal circularDNA,eccDNA)不同,microDNA不含有重复序列,并经常与某些特定基因关系密切,提示这些DNA很可能产  相似文献   

7.
表观遗传调控是指在不改变实际DNA序列却控制基因表达的过程,并在决定细胞功能和发育中起着至关重要的作用.表观遗传基因组包括组蛋白的位点、排列,以及化学修饰、DNA甲基化、非编码RNA的结构和表达,以及转录因子调控网络和染色体三维结构等各种因素共同协调作用来控制细胞表型.尽管复杂,各种二代测序,尤其是生物信息学技术的发展,极大地促进了人们对于表观遗传机制的理解.本文简要介绍当下生物信息技术在揭示表观遗传调控机制研究中的应用,从而为更深入理解整个基因调控机制,乃至为人类疾病治疗提供新的见解.  相似文献   

8.
植物中表观遗传修饰研究进展   总被引:1,自引:1,他引:1  
郑小国  陈亮  罗利军 《植物学报》2013,48(5):561-572
表观遗传是指DNA序列不发生变化, 但基因表达发生了可遗传的改变, 主要涉及DNA与染色体上的一些可逆修饰以及一些转录调控机制。DNA甲基化、组蛋白修饰和非编码RNA调控是表观遗传学研究的三大支柱。三者在植物生长发育、应对生物和非生物胁迫以及适应环境变化中发挥着极其重要的作用。该文综述了植物中DNA甲基化、组蛋白修饰、非编码RNA调控的研究进展及其对植物株高、生育期、花型、果实着色以及应对环境胁迫等方面的影响。  相似文献   

9.
表观遗传学: 生物细胞非编码RNA调控的研究进展   总被引:7,自引:0,他引:7  
于红 《遗传》2009,31(11):1077-1086
表观遗传学是研究基因表达发生了可遗传的改变, 而DNA序列不发生改变的一门生物学分支, 对细胞的生长分化及肿瘤的发生发展至关重要。表观遗传学的主要机制包括DNA甲基化、组蛋白修饰及新近发现的非编码RNA。非编码RNA 是指不能翻译为蛋白的功能性RNA分子, 其中常见的具调控作用的非编码RNA包括小干涉RNA、miRNA、piRNA 以及长链非编码RNA。近年来大量研究表明非编码RNA在表观遗传学的调控中扮演了越来越重要的角色。文章综述了近年来生物细胞非编码RNA调控的表观遗传学研究进展, 以有助于理解哺乳动物细胞中非编码RNA及其调控机制和功能。  相似文献   

10.
刘启鹏  安妮  岑山  李晓宇 《遗传》2018,40(6):445-450
转座子是一类可以在染色体上或不同染色体间自由移动的DNA。在高等生物中,处于活跃状态的转座子多为通过RNA中间体进行转座的逆转录转座子。由于逆转录转座子在细胞基因组中占有很高的比例,它的频繁转座能引起细胞基因组结构和功能的改变,导致癌症等严重基因疾病的发生,因此宿主细胞在长期的进化中形成了多种自我保护机制用以控制逆转录转座子活性。属于非编码小RNA的piRNA以其独特的机制在转录及转录后水平控制逆转录转座子RNA中间体的产生,抑制了逆转录转座过程的发生。本文总结了近年来piRNA控制转座子转座相关分子机制的研究进展,以期为转座子及基因调控方面的研究工作提供一些参考。  相似文献   

11.
神经发生与神经干细胞的分化调控机制是当今神经发育生物学的重要研究热点,在阐明干细胞的可塑性机制和临床治疗神经退行性疾病等方面具有广阔的应用前景。最近研究表明,外遗调节在神经干细胞的生长及分化方面表现出重要作用。这些外遗调节包括组蛋白的乙酰化/去乙酰化,DNA甲基化以及非编码RNAs对细胞命运决定的影响。  相似文献   

12.
上皮细胞转分化现象及其与疾病发生发展的关系,近年已成为细胞生物学、免疫学等多学科关注的聚焦点。转分化作为细胞分化发育的基本生物学现象,存在于机体诸多生理病理过程,也受表观遗传学的调控。相对于经典遗传学而言,表观遗传学作为一门新兴学科,其为生物体的基因表达调控及遗传现象提供了新的理论阐释。现知,DNA甲基化、组蛋白修饰及非编码RNA等均可导致上皮细胞基因发生表观遗传改变,与上皮细胞转分化的发生发展密切相关,并在该过程中发挥重要的调控作用。进一步阐明细胞转分化的分子基础及其表观遗传学调控机制,将有助于认识生命现象基本过程,并可为炎症性疾病、自身免疫病、器官纤维化,以及肿瘤发生与转移等机制的研究与防治,提供新的思路和应对策略。对上皮细胞转分化与表观遗传学调控关系作一简述。  相似文献   

13.
DNA甲基化是一种重要的表观遗传修饰,在维持基因组稳定、调控基因表达、转座子沉默以及植物抗逆等过程中具有重要作用.基因组为单链环状DNA的双生病毒复制过程中形成的双链DNA与组蛋白结合形成微染色体,可诱导并成为DNA甲基化的靶标.而相应地,双生病毒在与植物长期斗争中,进化出多种不同类型的抑制子并且通过不同的策略来抑制DNA甲基化以逃脱植物的防御反应.本文将结合植物与病毒互作中的研究重点,简述DNA甲基化在植物抗双生病毒方面的研究进展,并围绕双生病毒编码的蛋白抑制DNA甲基化的机制进行综述,以更好地理解植物中DNA甲基化介导的表观遗传调控在植物与双生病毒互作中的作用.  相似文献   

14.
真核生物的基因表达受多个层面调控,包括染色体水平、DNA水平、转录水平和转录后水平的调控等.长链非编码RNA(lnc RNA)是一类转录本超过200 nt的非编码RNA,其对基因表达的调控涉及上述各个层面,如组蛋白修饰、DNA甲基化的调控、转录的促进和抑制、m RNA的剪辑及对转录因子的调控等.其作用方式复杂多样,可与DNA、mRNA和蛋白质等相互作用而发挥调节作用.LncRNA保守性较差,但其表达却有较高的细胞、组织和分化阶段特异性.免疫系统的发育和分化受到精密的调控,且具有较高的阶段性和特异性.因此研究lnc RNA的功能及作用机制,免疫系统是较好的选择,这能促进我们对免疫调控的理解,为免疫性疾病的治疗提供新的思路和方法.本文主要介绍lnc RNA的分类和lnc RNA作用的一般分子机制,及其对T细胞、B细胞、固有免疫细胞和炎症因子的分子调控机制及其进展.  相似文献   

15.
酸敏感离子通道(acid-Sensing ion channels,ASlCs)是一类由细胞外质子(H )激活的配体门控阳离子通道.迄今为止,人们在哺乳动物体内已经发现了6种ASICs亚基蛋白,它们分布在多种组织器官中.越来越多的研究表明:ASICs参与了机体的生理、病理过程,如:学习、记忆、痛觉、脑中风和肿瘤.在过去的10年中,人们发现多种内源性或外源性分子可以调控ASICs通道活性.由于这些细胞外调控分子与多种生理和病理功能有关,因此研究细胞外调控分子对ASICs的调控及其分子机制,可以帮助我们更多地了解ASICs功能以及结构信息,也为人们设计ASICs靶点特异性药物提供了理论依据.文章将系统地介绍细胞外调控分子对ASICs的功能调控及其作用机制,特别是该研究领域的最新进展.  相似文献   

16.
外泌体(exosomes)是细胞主动向外环境中分泌的纳米囊泡结构,通常直径在100纳米以下。外泌体是来源细胞与靶细胞之间的物质交换和信息交流的新型载体,可以携带效应分子直接被周围细胞摄取或经血液循环至全身,在正常的生理过程或疾病的发生发展中发挥精细的调控作用。作为一种旁分泌介质,间充质干细胞(mesenchymal stem cell, MSC)来源的外泌体(MSC-exosomes)能够起到与干细胞相似的生理作用。MSC-exosomes所携带的生物活性蛋白质、脂质及DNA、mRNA和非编码RNA等生物活性物质,可能是MSC发挥治疗作用的重要机制之一。本文针对外泌体的生物学来源和近年来MSC-exosomes的标志物与特异性内容物在产生释放、提取鉴定和生物学功能等方面的研究,以及未来的应用前景进行综述,有利于研究者们在该领域开展更深入的研究。  相似文献   

17.
染色体黏合是细胞分裂过程中由一环状蛋白复合物黏合素(cohesin)将染色体单体聚合在一起的细胞生物学过程,确保了染色体在后期的精确分离.除了黏合素,还有许多辅助因子共同参与组成染色体黏合蛋白家族,在染色体黏合的建立、维持及解离过程中发挥重要功能.此外,该家族蛋白还参与调控DNA损伤修复、基因表达以及染色质高级结构形成等事件.虽然染色体黏合蛋白的功能和调控机制在有丝分裂中得到了比较深入的研究,但其在减数分裂,特别是第一次减数分裂中的作用及机制还不完全明确.本文对染色体黏合蛋白在各种生物学事件中的功能进行了概述,尤其阐释了它们在生殖细胞减数分裂中的非经典作用,并探讨了该领域未来的发展方向.  相似文献   

18.
作为一种系统进化足迹,基因组非编码保守DNA序列受到极大关注。由于非编码保守DNA序列很可能与转录因子或特异蛋白质相互作用,直接参与调控基因表达或稳定染色体结构等重要的生命活动。因此,它极有可能成为基因组研究的下一个新浪潮。在总结对生物非编码保守DNA序列的认识过程的基础上,详细阐述了非编码保守DNA序列形成与演化的模型及其分子生物学机制,进一步展望了非编码保守DNA序列在生物学研究中的应用前景。  相似文献   

19.
在真核生物中,DNA复制在染色体上特定的多位点起始.当细胞处在晚M及G1期,多个复制起始蛋白依次结合到DNA复制源,组装形成复制前复合体.pre.RC在Gl-S的转折期得到激活,随后,多个直接参与DNA复制又形成的蛋白结合到DNA复制源,启动DNA的复制,形成两个双向的DNA复制又.在染色体上,移动的DNA复制又经常会碰到复制障碍(二级DNA结构、一些蛋白的结合位点、损伤的碱基等)而暂停下来,此时,需要细胞周期检验点的调控来稳定复制叉,否则,会导致复制又垮塌及基因组不稳定.本文就真核细胞染色体DNA复制起始的机制,以及复制又稳定性的维持机制进行简要综述.  相似文献   

20.
针对细菌对温度变化响应呈现的生理生化特性变化,总结了细胞内作为温度感应元件DNA、RNA及蛋白质分子如何响应温度变化,以及细胞调控生理生化特性的机制。重点介绍了典型的温度响应双组分系统的组成、结构及调控方式,如铜绿假单胞菌PG1480的CorS/CorR双组分系统响应温度的刺激调控细胞基因的表达,枯草芽胞杆菌的DesK/DesR双组分系统响应外界温度变化,调节编码脂肪酸去饱和酶基因des的表达,以及在嗜麦芽单胞菌中发现的LotS/LotR双组分系统,调控低温响应蛋白酶的表达。同时总结c-di-GMP作为第二信使参与温度响应双组分调控的机制;提出研究的热点问题和关键技术以及建议的研究策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号