首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
BackgroundIn 2005, Bangladesh, India and Nepal agreed to eliminate visceral leishmaniasis (VL) as a public health problem. The approach to this was through improved case detection and treatment, and controlling transmission by the sand fly vector Phlebotomus argentipes, with indoor residual spraying (IRS) of insecticide. Initially, India applied DDT with stirrup pumps for IRS, however, this did not reduce transmission. After 2015 onwards, the pyrethroid alpha-cypermethrin was applied with compression pumps, and entomological surveillance was initiated in 2016.MethodsEight sentinel sites were established in the Indian states of Bihar, Jharkhand and West Bengal. IRS coverage was monitored by household survey, quality of insecticide application was measured by HPLC, presence and abundance of the VL vector was monitored by CDC light traps, insecticide resistance was measured with WHO diagnostic assays and case incidence was determined from the VL case register KAMIS.ResultsComplete treatment of houses with IRS increased across all sites from 57% in 2016 to 70% of houses in 2019, rising to >80% if partial house IRS coverage is included (except West Bengal). The quality of insecticide application has improved compared to previous studies, average doses of insecticide on filters papers ranged from 1.52 times the target dose of 25mg/m2 alpha-cypermethrin in 2019 to 1.67 times in 2018. Resistance to DDT has continued to increase, but the vector was not resistant to carbamates, organophosphates or pyrethroids. The annual and seasonal abundance of P. argentipes declined between 2016 to 2019 with an overall infection rate of 0.03%. This was associated with a decline in VL incidence for the blocks represented by the sentinel sites from 1.16 per 10,000 population in 2016 to 0.51 per 10,000 in 2019.ConclusionThrough effective case detection and management reducing the infection reservoirs for P. argentipes in the human population combined with IRS keeping P. argentipes abundance and infectivity low has reduced VL transmission. This combination of effective case management and vector control has now brought India within reach of the VL elimination targets.  相似文献   

2.

Objectives

To investigate the DDT and deltamethrin susceptibility of Phlebotomus argentipes, the vector of Leishmania donovani, responsible for visceral leishmaniasis (VL), in two countries (India and Nepal) with different histories of insecticide exposure.

Methods

Standard WHO testing procedures were applied using 4% DDT and 0.05% deltamethrin impregnated papers. The effect of the physiological status (fed and unfed) of females on the outcome of the bioassays was assessed and the optimal time of exposure for deltamethrin was evaluated on a colony population. Field populations from both countries were tested.

Results

Fed and unfed females responded in a similar way. For exposure time on field samples 60 min was adopted for both DDT and deltamethrin. In Bihar, knockdown and mortality with DDT was respectively 20 and 43%. In Nepal almost all sand flies were killed, except at the border with Bihar (mortality 62%). With 0.05% deltamethrin, between 96 and 100% of the sand flies were killed in both regions.

Conclusions

Based on literature and present data 4% DDT and 0.05% deltamethrin seem to be acceptable discriminating concentrations to separate resistant from susceptible populations. Resistance to DDT was confirmed in Bihar and in a border village of Nepal, but the sand flies were still susceptible in villages more inside Nepal where only synthetic pyrethroids are used for indoor spraying. The low effectiveness of indoor spraying with DDT in Bihar to control VL can be partially explained by this resistance hence other classes of insecticides should be tested. In both countries P. argentipes sand flies were susceptible to deltamethrin.  相似文献   

3.
Anopheles gambiae s.l. (Diptera: Culicidae) in Muleba, Tanzania has developed high levels of resistance to most insecticides currently advocated for malaria control. The kdr mutation has almost reached fixation in An. gambiae s.s. in Muleba. This change has the potential to jeopardize malaria control interventions carried out in the region. Trends in insecticide resistance were monitored in two intervention villages using World Health Organization (WHO) susceptibility test kits. Additional mechanisms contributing to observed phenotypic resistance were investigated using Centers for Disease Control (CDC) bottle bioassays with piperonylbutoxide (PBO) and S,S,S‐tributyl phosphorotrithioate (DEF) synergists. Resistance genotyping for kdr and Ace‐1 alleles was conducted using quantitative polymerase chain reaction (qPCR). In both study villages, high phenotypic resistance to several pyrethroids and DDT was observed, with mortality in the range of 12–23%. There was a sharp decrease in mortality in An. gambiae s.l. exposed to bendiocarb (carbamate) from 84% in November 2011 to 31% in December 2012 after two rounds of bendiocarb‐based indoor residual spraying (IRS). Anopheles gambiae s.l. remained susceptible to pirimiphos‐methyl (organophosphate). Bendiocarb‐based IRS did not lead to the reversion of pyrethroid resistance. There was no evidence for selection for Ace‐1 resistance alleles. The need to investigate the operational impact of the observed resistance selection on the effectiveness of longlasting insecticidal nets and IRS for malaria control is urgent.  相似文献   

4.
In the Indian subcontinent, Leishmania donovani, the parasite causing visceral leishmaniasis (VL) is transmitted by the sand fly vector Phlebotomus argentipes. Long lasting insecticide treated nets (LN) have been postulated as alternative or complement to Indoor Residual Spraying but there are few field studies evaluating the entomological efficacy of different nets against this vector. We conducted two crossover trials in a VL endemic area in Nepal to compare the barrier effect of (1) LN with different mesh sizes (156 holes/inch2 vs 625 holes/inch2) and (2) alpha-cypermethrin treated LN and untreated nets having the same mesh size (156 holes/inch2). Each crossover trial had two arms consisting of a sequence of two different nets for 8 nights. We used 10 cattle sheds per trial. A cow placed under the net was used as bait. CDC light traps placed inside the nets were used to evaluate the number of P. argentipes crossing the net barrier. Negative binomial generalized estimating equation (GEE) population-averaged models adjusted by night and sequence were used to estimate the barrier effect of the different nets. The crossover trials conducted in a rural village in Morang district (South-eastern Nepal) demonstrated that reducing the size of the holes in treated nets (625 holes/inch2) increased the barrier effect of LN by 77% (95% confidence interval (CI): 56%–88%) compared with treated nets with larger holes (156 holes/inch2). Treating nets with alpha-cypermethrin reduced the number of P. argentipes captured inside the nets by 77% (95% CI: 27%–93%) compared with untreated nets. The effectiveness and acceptability of finer mesh pyrethroid treated LN should be tested for VL prevention in a randomized controlled trial.  相似文献   

5.
IntroductionIn Colombia, organochloride, organophosphate, carbamate, and pyrethroid insecticides are broadly used to control Aedes aegypti populations. However, Colombian mosquito populations have shown variability in their susceptibility profiles to these insecticides, with some expressing high resistance levels.Materials and methodsIn this study, we analyzed the susceptibility status of ten Colombian field populations of Ae. aegypti to two pyrethroids; permethrin (type-I pyrethroid) and lambda-cyhalothrin (type-II pyrethroid). In addition, we evaluated if mosquitoes pressured with increasing lambda-cyhalothrin concentrations during some filial generations exhibited altered allelic frequency of these kdr mutations and the activity levels of some metabolic enzymes.ResultsMosquitoes from all field populations showed resistance to lambda-cyhalothrin and permethrin. We found that resistance profiles could only be partially explained by kdr mutations and altered enzymatic activities such as esterases and mixed-function oxidases, indicating that other yet unknown mechanisms could be involved. The molecular and biochemical analyses of the most pyrethroid-resistant mosquito population (Acacías) indicated that kdr mutations and altered metabolic enzyme activity are involved in the resistance phenotype expression.ConclusionsIn this context, we propose genetic surveillance of the mosquito populations to monitor the emergence of resistance as an excellent initiative to improve mosquito-borne disease control measures.  相似文献   

6.
Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d''Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with heightened CYP6 P450 expression, which also provides resistance across contrasting insecticides. Mosquito populations displaying such a diverse basis of extreme and cross-resistance are likely to be unresponsive to standard insecticide resistance management practices.  相似文献   

7.

Background

Although Anopheles funestus is difficult to rear, it is crucial to analyse field populations of this malaria vector in order to successfully characterise mechanisms of insecticide resistance observed in this species in Africa. In this study we carried out a large-scale field collection and rearing of An. funestus from Mozambique in order to analyse its susceptibility status to insecticides and to broadly characterise the main resistance mechanisms involved in natural populations.

Methodology/Principal Findings

3,000 F1 adults were obtained through larval rearing. WHO susceptibility assays indicated a very high resistance to pyrethroids with no mortality recorded after 1h30min exposure and less than 50% mortality at 3h30min. Resistance to the carbamate, bendiocarb was also noted, with 70% mortality after 1h exposure. In contrast, no DDT resistance was observed, indicating that no kdr-type resistance was involved. The sequencing of the acetylcholinesterase gene indicated the absence of the G119S and F455W mutations associated with carbamate and organophosphate resistance. This could explain the absence of malathion resistance in this population. Both biochemical assays and quantitative PCR implicated up-regulated P450 genes in pyrethroid resistance, with GSTs playing a secondary role. The carbamate resistance observed in this population is probably conferred by the observed altered AChE with esterases also involved.

Conclusion/Significance

The high level of pyrethroid resistance in this population despite the cessation of pyrethroid use for IRS in 1999 is a serious concern for resistance management strategies such as rotational use of insecticides. As DDT has now been re-introduced for IRS, susceptibility to DDT needs to be closely monitored to prevent the appearance and spread of resistance to this insecticide.  相似文献   

8.

Background

In the Indian subcontinent, Visceral leishmaniasis is endemic in a geographical area coinciding with the Lower Gangetic Plain, at low altitude. VL occurring in residents of hill districts is therefore often considered the result of Leishmania donovani infection during travel. Early 2014 we conducted an outbreak investigation in Okhaldhunga and Bhojpur districts in the Nepal hills where increasing number of VL cases have been reported.

Methodology/Principal Findings

A house-to-house survey in six villages documented retrospectively 35 cases of Visceral Leishmaniasis (VL). Anti-Leishmania antibodies were found in 22/23 past-VL cases, in 40/416 (9.6%) persons without VL and in 12/155 (7.7%) domestic animals. An age- and sex- matched case-control study showed that exposure to known VL-endemic regions was no risk factor for VL, but having a VL case in the neighbourhood was. SSU-rDNA PCR for Leishmania sp. was positive in 24 (5%) of the human, in 18 (12%) of the animal samples and in 16 (14%) bloodfed female Phlebotomus argentipes sand flies. L. donovani was confirmed in two asymptomatic individuals and in one sand fly through hsp70-based sequencing.

Conclusions/Significance

This is epidemiological and entomological evidence for ongoing local transmission of L. donovani in villages at an altitude above 600 meters in Nepal, in districts considered hitherto non-endemic for VL. The VL Elimination Initiative in Nepal should therefore consider extending its surveillance and control activities in order to assure VL elimination, and the risk map for VL should be redesigned.  相似文献   

9.
Visceral leishmaniasis (VL) is a life-threatening vector borne disease caused by the Leishmania donovani species complex. In Nepal, it is transmitted to humans by L donovani infected Phlebotomus argentipes sand flies [12]. The pathogenesis of VL is complex, and the clinical presentation ranges from asymptomatic infection to severe and fatal disease. Asymptomatic infection may act as potential reservoirs for sustained transmission of VL in endemic areas. We investigated the sero-prevalence of symptomatic and asymptomatic infection of VL in people of three endemic districts of Nepal by serology targeting family members and neighbors of VL patients. Sero-survey was conducted among 189 people of villages endemic to VL from Palpa, Sarlahi and Saptari districts during 2016 to 2018 using the rK39 rapid diagnostic test (InBios International, Seattle, WA) to detect anti-Leishmania antibodies. Sero-positivity was 35.7% (10/28) in people tested from Sarlahi districts, 6% (3/50) in Saptari district and 1.7% (1/59) from the Palpa district. In Sarlahi, sero-positivity was found to be highest among the age group below 15 years (44.5%). All family members of diagnosed VL cases in Saptari and Palpa districts were found to be rK39 test negative. In Sarlahi district, among the ten sero-positive cases, nine were febrile and became symptomatic VL cases after few days and one case remained asymptomatic during the six month follow up. Asymptomatic cases in VL endemic districts of Nepal were found to be sero-positive, screening of people in VL endemic districts would be important for prevention of VL transmission.  相似文献   

10.

Background

Visceral Leishmaniasis (VL) is a vector-borne infectious disease, caused by the protozoan Leishmania donovani, which is transmitted by phlebotomine sand flies. In an earlier study in Bihar, India, we found an association between incidence of VL and housing conditions. In the current study we investigated the influence of housing structure and conditions in and around the house on the indoor abundance of Phlebotomus argentipes, the vector of VL in this area.

Methods

In each of 50 study villages in Muzaffarpur district, we randomly selected 10 houses. Light traps were installed in each house for one night during three annual peaks of sand fly density over two successive years. Sand flies captured were morphologically identified and segregated by species, sex and feeding status. Data on housing conditions and socio-economic status were also collected. We fitted a linear mixed-effects regression model with log-transformed P. argentipes counts as outcome variable and village as random effect.

Results

P. argentipes was found in all but four of the 500 households. There was considerable variability between the years and the seasons. On bivariate analysis, housing structure, dampness of the floor, keeping animals inside, presence of animal dung around the house, and socio-economic status were all significantly associated with sand fly density. Highest sand fly densities were observed in thatched houses. In the multivariate model only the housing structure and socio-economic status remained significant.

Conclusions

Better housing conditions are associated with lower sand fly densities, independent of other socio-economic conditions. However, in this area in Bihar even in the better-built houses sand flies are present.  相似文献   

11.
Information on the insecticide resistance profiles of Aedes aegypti in Indonesia is fragmentary because of the lack of wide-area insecticide resistance surveillance. We collected Ae. aegypti from 32 districts and regencies in 27 Indonesian provinces and used WHO bioassays to evaluate their resistance to deltamethrin, permethrin, bendiocarb, and pirimiphos-methyl. To determine the possible resistance mechanisms of Ae. aegypti, synergism tests were conducted using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioates (DEF). The Ae. aegypti from all locations exhibited various levels of resistance to pyrethroids. Their resistance ratio (RR50) to permethrin and deltamethrin ranged from 4.08× to 127× and from 4.37× to 72.20×, respectively. In contrast with the findings of other studies, most strains from the highly urbanized cities on the island of Java (i.e., Banten, Jakarta, Bandung, Semarang, Yogyakarta, and Surabaya) exhibited low to moderate resistance to pyrethroids. By contrast, the strains collected from the less populated Kalimantan region exhibited very high resistance to pyrethroids. The possible reasons are discussed herein. Low levels of resistance to bendiocarb (RR50, 1.24–6.46×) and pirimiphos-methyl (RR50, 1.01–2.70×) were observed in all tested strains, regardless of locality. PBO and DEF synergists significantly increased the susceptibility of Ae. aegypti to permethrin and deltamethrin and reduced their resistance ratio to less than 16×. The synergism tests suggested the major involvement of cytochrome P450 monooxygenases and esterases in conferring pyrethroid resistance. On the basis of our results, we proposed a 6-month rotation of insecticides (deltamethrin + synergists ➝ bendiocarb ➝ permethrin + synergists ➝ pirimiphos-methyl) and the use of an insecticide mixture containing pyrethroid and pyrimiphos-methyl to control Ae. aegypti populations and overcome the challenge of widespread Ae. aegypti resistance to pyrethroid in Indonesia.  相似文献   

12.

Background

Visceral Leishmaniasis (VL) is a life threatening neglected infectious disease in the Indian subcontinent, transmitted by the bite of female sand flies. Estimation of the infectivity in the vector population, collected in different seasons, may be useful to better understanding the transmission dynamics of VL as well as to plan vector control measures.

Methodology

We collected sand flies from highly endemic regions of Bihar state, India for one year over three seasons. The species of the sand flies were confirmed by species-specific PCR-RFLP. Leishmania donovani infection was investigated in 1397 female Phlebotomus argentipes using PCR, targeting the Leishmania specific minicircle of the kDNA region. Further, the parasitic load in the infected sand flies was measured using quantitative PCR.

Conclusion

Though sand flies were most abundant in the rainy season, the highest rate of infection was detected in the winter season with 2.84% sand flies infected followed by the summer and rainy seasons respectively. This study can help in vector elimination programmes and to reduce disease transmission.  相似文献   

13.
Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines). Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur). Only one insecticide (dieldrin) was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin) to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar.  相似文献   

14.

Background

Visceral leishmaniasis is the world'' second largest vector-borne parasitic killer and a neglected tropical disease, prevalent in poor communities. Long-lasting insecticidal nets (LNs) are a low cost proven vector intervention method for malaria control; however, their effectiveness against visceral leishmaniasis (VL) is unknown. This study quantified the effect of LNs on exposure to the sand fly vector of VL in India and Nepal during a two year community intervention trial.

Methods

As part of a paired-cluster randomized controlled clinical trial in VL-endemic regions of India and Nepal we tested the effect of LNs on sand fly biting by measuring the antibody response of subjects to the saliva of Leishmania donovani vector Phlebotomus argentipes and the sympatric (non-vector) Phlebotomus papatasi. Fifteen to 20 individuals above 15 years of age from 26 VL endemic clusters were asked to provide a blood sample at baseline, 12 and 24 months post-intervention.

Results

A total of 305 individuals were included in the study, 68 participants provided two blood samples and 237 gave three samples. A random effect linear regression model showed that cluster-wide distribution of LNs reduced exposure to P. argentipes by 12% at 12 months (effect 0.88; 95% CI 0.83–0.94) and 9% at 24 months (effect 0.91; 95% CI 0.80–1.02) in the intervention group compared to control adjusting for baseline values and pair. Similar results were obtained for P. papatasi.

Conclusions

This trial provides evidence that LNs have a limited effect on sand fly exposure in VL endemic communities in India and Nepal and supports the use of sand fly saliva antibodies as a marker to evaluate vector control interventions.  相似文献   

15.
Indoor Residual Spraying (IRS) is one of the interventions to control the vectors of Visceral Leishmaniasis (VL). Different insecticides are used in affected countries, also in the Regional Initiative for the Elimination of VL in South-East Asia. This systematic review assesses all available studies analysing the effectiveness of IRS on the key vectors of VL. The systematic review followed PRISMA guidelines, with a broad search strategy, applied to seven key databases. Inclusion criteria were studies focusing on 1) Visceral leishmaniasis 2) Indoor Residual Spraying (IRS) or synonyms, and 3) all primary research methods. 21 studies were included, five cluster randomised controlled trials (cRCTs), one randomised controlled trial (RCT), 11 intervention studies, also included were three modelling studies and one survey. 19 out of 21 included studies were published between 2009 and 2020. 18 of the studies were conducted in the context of the Regional Initiative. Effects of IRS on vector populations are positive, confirmed in terms of effectiveness and by the availability of studies. Deltamethrin and alpha-Cypermethrin reduce total sandfly counts, and/or Phlebotomus argentipes counts by up to 95% with an effect of a minimum of one month. Prolonged effects are not regularly seen. DDT has been used in India only: whereas in the 1990s a good effect could be measured, this effect waned over time. Two intervention studies, embedded in larger programmes in 2019 and 2020, replaced DDT with alpha-Cypermethrin throughout the study. Combinations of different interventions are not systematically researched, however showing some promising results, for example for the combination of IRS and Temephos. Constant monitoring of insecticide resistancies and quality delivery of IRS are confirmed as key issues for programmes. No human transmission data are available to directly relate an effect of IRS–although modelling studies confirm the effect of IRS on human transmission. Concluding, IRS continues to be an effective intervention for Phlebotomus argentipes control. Delivery requires constant monitoring and quality assurance. Further studies need to assess IRS in different geographical areas affected by VL and combinations of interventions.  相似文献   

16.
A bioassay was used to detect active site insensitivity (knock-down resistance [kdr]) in pyrethroid resistant larvae of the horn fly, Haematobia irritans (L.). The larvae of the resistant population had KD50's 42.0-, 28.1- and 29.2-fold greater to permethrin, fenvalerate and lambda-cyhalothrin, respectively, compared with the susceptible population. In filter paper bioassays, resistant adult horn flies were 17 to 39.1 times less susceptible to the pyrethroids than susceptible adults at LC50. These results further document active site insensitivity as the major mechanism of pyrethroid resistance in the horn fly.  相似文献   

17.
BackgroundPhlebotomine sand flies are prominent vectors of Leishmania parasites that cause leishmaniasis, which comes second to malaria in terms of parasitic causative fatalities globally. In the absence of human vaccines, sand fly chemical-based vector control is a key component of leishmaniasis control efforts.Methods and findingsWe performed a literature review on the current interventions, primarily, insecticide-based used for sand fly control, as well as the global insecticide resistance (IR) status of the main sand fly vector species. Indoor insecticidal interventions, such as residual spraying and treated bed nets are the most widely deployed, while several alternative control strategies are also used in certain settings and/or are under evaluation. IR has been sporadically detected in sand flies in India and other regions, using non-standardized diagnostic bioassays. Molecular studies are limited to monitoring of known pyrethroid resistance mutations (kdr), which are present at high frequencies in certain regions.ConclusionsAs the leishmaniasis burden remains a major problem at a global scale, evidence-based rational use of insecticidal interventions is required to meet public health demands. Standardized bioassays and molecular markers are a prerequisite for this task, albeit are lagging behind. Experiences from other disease vectors underscore the need for the implementation of appropriate IR management (IRM) programs, in the framework of integrated vector management (IVM). The implementation of alternative strategies seems context- and case-specific, with key eco-epidemiological parameters yet to be investigated. New biotechnology-based control approaches might also come into play in the near future to further reinforce sand fly/leishmaniasis control efforts.  相似文献   

18.

Background

The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary characterisation of the putative resistance mechanisms involved.

Methodology/Principal Findings

A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin). Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate), malathion (organophosphate) and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG.

Conclusion

This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread than previously assumed and therefore this should be taken into account for the implementation and management of vector control programs in Africa.  相似文献   

19.
This study examined pyrethroid resistance intensity and mechanisms in Culex quinquefasciatus (Say) (Diptera: Culicidae) populations from Jigawa, North-West Nigeria. Resistance statuses to permethrin, lambda-cyhalothrin and alphacypermethrin were determined with both WHO and CDC resistance bioassays. Synergist assay was conducted by pre-exposing the populations to Piperonyl butoxide (PBO) using the WHO method. Resistance intensities to 2x, 5x and 10x of diagnostic concentrations were determined with the CDC bottle method. Species analysis and presence of knockdown mutation (Leu-Phe) were done using Polymerase Chain Reaction (PCR). Results showed that Cx. quinquefasciatus was the only Culex spp. present and “Kdr-west” mutation was not detected in all analyzed samples. Using WHO method, Cx. quinquefasciatus resistance to permethrin was detected in Dutse (12.2%) and Kafin-Hausa (77.78%). Lambda-cyhalothrin resistance was recorded only in Kafin-Hausa (83.95%) with resistance suspected in Ringim (90%). Resistance to alphacypermethrin was recorded in all locations. Pre-exposure to PBO led to 100% mortality to alphacypermethrin and lambda-cyhalothrin in Ringim while mortality to permethrin and alphacypermethrin in Dutse increased from 12.2% to 97.5% and 64.37% to 79.52% respectively. Using CDC bottle bioassay, resistance was also recorded in all populations and the result shows a significant positive correlation (R2 = 0.728, p = 0.026) with the result from the WHO bioassay. Results of resistance intensity revealed a very high level of resistance in Kafin-Hausa with susceptibility to lambda-cyhalothrin and alphacypermethrin not achieved at 10x of diagnostic doses. Resistance intensity was also high in Dutse with susceptibility to all insecticides not achieved at 5x of diagnostic doses. Widespread and high intensity of resistance in Cx. quinquefasciatus from North-West Nigeria is a major threat to the control of diseases transmitted by Culex and other mosquito species. It is a challenge that needs to be adequately addressed so as to prevent the failure of pyrethroid-based vector control tools.  相似文献   

20.
Current vector control programs are largely dependent on pyrethroids, which are the most commonly used and only insecticides recommended by the World Health Organization for insecticide-treated nets (ITNs). However, the rapid spread of pyrethroid resistance worldwide compromises the effectiveness of control programs and threatens public health. Since few new insecticide classes for vector control are anticipated, limiting the development of resistance is crucial for prolonging efficacy of pyrethroids. In this study, we exposed a field-collected population of Culex pipiens pallens to different insecticide selection intensities to dynamically monitor the development of resistance. Moreover, we detected kdr mutations and three detoxification enzyme activities in order to explore the evolutionary mechanism of pyrethroid resistance. Our results revealed that the level of pyrethroid resistance was proportional to the insecticide selection pressure. The kdr and metabolic resistance both contributed to pyrethroid resistance in the Cx. pipiens pallens populations, but they had different roles under different selection pressures. We have provided important evidence for better understanding of the development and mechanisms of pyrethroid resistance which may guide future insecticide use and vector management in order to avoid or delay resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号