首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Asteriscus otolith shapes as well as their morphometry and shape contours were investigated in order to identify four allopatric Alburnus species: A. chalcoides (Güldenstädt, 1772) (Ordu), A. escherichii Steindachner, 1897 (Eski?ehir), Amossulensis Heckel, 1843 (Tunceli), and A. tarichi (Güldenstädt, 1814) (Van) in Turkish inland waters. These were compared using the shape indices (form factor, roundness, circularity, ellipticity, rectangularity and aspect ratio), and the morphological characters [otolith weight (OWE), otolith length (OL), otolith width (OW), otolith perimeter (OP), and otolith area (OA)]. The overall canonical discriminant analysis (CDA) classification score was 93.8%, with the lowest score for A. escherichii (82.5%) and the highest for A. chalcoides (100%). The otolith shapes, morphology and shape contours of all sampled fish were a clear species differentiator, thereby demonstrating that the otolith shape is species‐specific. The current study presents for the first time comprehensive variation information on interspecific left‐right asteriscus otoliths in males and females of each Alburnus species: A. chalcoides from Ordu, A. escherichii from Eski?ehir, A. mossulensis from Tunceli and A. tarichi from Van, based on a total of 307 individuals. Scanning electron microscopy (SEM) images, shape contours and other otolith characters vary within the same genus; these differences should be investigated not only in other freshwater fish species or genera but also in the same species living in different habitats. In addition, further investigation is required not only with respect to the morphometry, biometry, shape, geometry, and shape contours of the otoliths, but also regarding the genetic methods for robust identification of various sympatric and allopatric fish populations.  相似文献   

9.
10.
11.
12.
13.
The identification of field mice Apodemus flavicollis, Apodemus sylvaticus, and Apodemus alpicola represents a challenge for field scientists due to their highly overlapping morphological traits and habitats. Here, we propose a new fast real‐time PCR method to discriminate the three species by species‐specific TaqMan assays. Primers and probes were designed based on the alignment of 54 cyt‐b partial sequences from 25 different European countries retrieved from GenBank. TaqMan assays were then tested on 133 samples from three different areas of Italy. Real‐time PCR analysis showed 92 samples classified as A. flavicollis, 13 as A. sylvaticus, and 28 as A. alpicola. We did not observe any double amplification and DNA sequencing confirmed species assignment obtained by the TaqMan assays. The method is implementable on different matrices (ear tissues, tail, and blood). It can be used on dead specimens or on alive animals with minimally invasive sampling, and given the high sensitivity, the assay may be also suitable for degraded or low‐DNA samples. The method proved to work well to discriminate between the species analyzed. Furthermore, it gives clear results (amplified or not) and it does not require any postamplification handling of PCR product, reducing the time needed for the analyses and the risk of carryover contamination. It therefore represents a valuable tool for field ecologists, conservationists, and epidemiologists.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号