首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cichlid fish (Aequidens curviceps) distributed themselves and allocated their foraging time between two drift food patches in close approximation to the patch profitability ratio, as predicted by the ideal free distribution theory. The fish thereby achieved similar average feeding rates in the two patches, in two of three patch profitability ratio experiments. However, one major assumption of the ideal free model was violated, since individual fish differed in their competitive abilities for limited food resources, which resulted in unequal payoffs among individuals within each patch. Individual variation in feeding rates, and thus in competitive ability, was not related to despotism, but perhaps rather to individual differences in perceptual ability and in the ability to learn which patch was currently the more profitable. The strategy used by the fish to assess patch profitability included sampling available patches. However, individual fish switched (sampled) patches with varying frequency. Sampling had an associated cost, since high-frequency switchers had lower feeding rates on average than low-frequency switchers. Differences in foraging strategy among the fish therefore contributed to the observed in-equality in individual payoffs within patches.  相似文献   

2.
Animals foraging in heterogeneous environments benefit from information on local resource density because it allows allocation of foraging effort to rich patches. In foraging groups, this information may be obtained by individuals through sampling or by observing the foraging behaviour of group members. We studied the foraging behaviour of goldfish (Carassius auratus) groups feeding in pools on resources distributed in patches. First, we determined if goldfish use sampling information to distinguish between patches of different qualities, and if this allowed goldfish to benefit from a heterogeneous resource distribution. Then, we tested if group size affected the time dedicated to food searching and ultimately foraging success. The decision of goldfish to leave a patch was affected by whether or not they found food, indicating that goldfish use an assessment rule. Giving-up density was higher when resources were highly heterogeneous, but overall gain was not affected by resource distribution. We did not observe any foraging benefits of larger groups, which indicate that grouping behaviour was driven by risk dilution. In larger groups the proportion searching for food was lower, which suggests interactions among group members. We conclude that competition between group members affects individual investments in food searching by introducing the possibility for alternative strategies, such as scrounging or resource monopolisation.  相似文献   

3.
The food resources of Drosophila comprise decaying vegetable matter distributed in patches, yet foraging behavior has not been examined in larvae reared continuously in a patchy environment. Here, the extent and rate of inter-patch movement was studied in larvae of four wild strains of D. melanogaster inhabiting an experimental arena from the egg stage to the third larval instar. The hypotheses were that larvae would forage primarily in the third instar, that larvae would move from low-protein patches at higher rates than from high-protein patches, and that foraging rates would be higher on an agar substrate than on sand. Larvae hatching on a nutrient-poor food patch switched to a nutrient-rich patch during the first instar. The rate of interpatch switching increased with larval age, as did the number of larvae roving on the substrate between food patches. Inter-patch distance affected switching speed---the closer the patches, the faster the switching. High protein patches were preferred over low-protein patches, but there was a bias towards staying on the natal patch. Significant variation among strains in latency to forage, in proportion of larvae that switched patches, and in the rate of roving between patches suggests that there is natural genetic variation for these traits. Larvae switched food patches on a substrate of moist sand as quickly as on an agar substrate.  相似文献   

4.
The use and misuse of public information by foraging red crossbills   总被引:6,自引:5,他引:1  
Group foragers may assess patch quality more efficiently bypaying attention to the sampling behavior of group members foragingin the same patch (i.e., using "public information"). To determinewhether red crossbills (Loxia curvirostra) use public informationto aid their patch departure decisions, we conducted experimentsthat compared the sampling behavior of crossbills foraging ona two-patch system (one patch was always empty, one patch containingseeds) when alone, in pairs, and in flocks of three. When foragingalone, crossbills departed from empty patches in a way thatwas qualitatively consistent with energy maximization. We foundevidence for the use of public information when crossbills werepaired with two flock mates, but not when paired with one flockmate. When foraging with two flock mates, crossbills sampledapproximately half the number of cones on the empty patch beforedeparting as compared to when solitary. Furthermore, as expected ifpublic information is used, the variance in both the numberof cones and time spent on the empty patch decreased when crossbillsforaged with two flock mates as compared to when alone. Althoughhigh frequencies of scrounging reduce the availability of publicinformation, scrounging is usually uncommon in crossbills, apparentlybecause they exploit divisible patches. Consequently, publicinformation is likely to be important to crossbills in the wild.We also show that feeding performance is greatly diminishedwhen the feeding performances of flock mates differ. This providesa mechanism that will favor assortative grouping by phenotypewhen phenotypes affect feeding performance, which may in turnpromote speciation in some groups of animals.  相似文献   

5.
The behavioural response of juvenile bluegill sunfish (Lepomis macrochirus) to predation risk when selecting between patches of artificial vegetation differing in food and stem density was investigated. Bluegill foraging activity was significantly affected by all three factors. Regardless of patch stem density or risk of predation bluegills preferred patches with the highest prey number. During each trial bluegill foraging activity was clearly divided into a between- and within-patch component. In the presence of a predator bluegills reduced their between-patch foraging activity by an equivalent amount regardless of patch stem density or food level, apparently showing a risk-adjusting behavioural response to predation risk. Within patches, however, foraging activity was affected by both food level and patch stem density. When foraging in a patch offering a refuge from predation, the presence of a predator had no effect on bluegill foraging activity within this patch. However, if foraging in a patch with only limited refuge potential, bluegill foraging activity was reduced significantly in the presence of a predator. Further, this reduction was significantly greater if the patch contained a low versus a high food level, indicating a risk-balancing response to predation with respect to within-patch foraging activity. Both these responses differ from the risk-avoidance response to predation demonstrated by juvenile bluegills when selecting among habitats. Therefore, our results demonstrate the flexibility of juvenile bluegill foraging behaviour.  相似文献   

6.
In the adult stage, many parasitoids require hosts for their offspring growth and plant-derived food for their survival and metabolic needs. In agricultural fields, nectar provisioning can enhance biological control by increasing the longevity and fecundity of many species of parasitoids. Provided in a host patch, nectar can also increase patch quality for parasitoids and affect their foraging decisions, patch time residence, patch preference or offspring allocation. The aim of this study was to investigate the impact of extrafloral nectar (EFN) provisioning close to hosts on parasitoid aggregation in patches. The aphid parasitoid Diaeretiella rapae (M’Intosh) was released inside or outside patches containing Brassica napus L. infested by Brevicoryne brassicae L. aphids and Vicia faba L. with or without EFN. When parasitoids were released outside patches, more parasitoids were observed in patches with EFN than in patches deprived of EFN. This higher recruitment could be linked to a higher attraction of a combination of host and food stimuli or a learning process. A release–recapture experiment of labeled parasitoids released within patches showed the higher retention of parasitoids in patches providing EFN and hosts, suggesting that food close to the host patch affects patch residence time. Both attractiveness and patch retention could be involved in the higher number of parasitoids foraging in host patches surrounded by nectar and for the higher parasitism recorded. Nectar provisioning in host patches also affected female offspring allocation inside the patch.  相似文献   

7.
I conducted feeding experiments to determine the effect of variations in food availability on individual flocking behaviour and foraging efficiency in a social corvid, the alpine chough Pyrrhocorax graculus, which lives in large flocks all year round. In 37 trials I varied both food quantity and the number of food patches. A decrease in the amount of available food reduced the mean flock size, the proportion of birds that had access to food, and their mean pecking rate. A decrease in the number of patches, on the other hand, reduced only the proportion of birds that had access to food. The number of choughs foraging was not influenced by food competition but depended only on the number visiting the site. Females competed less well than males: when food was made scarce, they frequented the site in the same proportion as did males, but had less access to food. I suggest that in this social corvid, long-term advantages to flocking related to social bonds, such as the maintenance of pair bonds, may compensate for short-term costs such as a reduction in foraging efficiency. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

8.
Social and ecological conditions can influence flock formation (e.g. number of flocks, flock size, etc.) depending on the degree of social attraction of a species. We studied group formation in brown‐headed cowbirds (Molothrus ater) over short time periods (30 min) in two semi‐natural experiments conducted under controlled conditions. First, we determined the shape of the relationship between intake rate and flock size by manipulating group size in a single enclosure. Second, we assessed the role of population size, food abundance, and predation risk, and their interactions, in flock size formation in a system of four enclosures (two with and two without food) connected to a central refuge patch. In the first experiment, we found that pecking rates peaked at intermediate flock sizes (three to six individuals), which was influenced by greater availability of foraging time and more aggressive interactions in large groups. In the second experiment, flock sizes in the patches with food increased with population size likely due to the benefits of patch exploitation in groups. Flock size decreased after predator attack probably because refuge availability reduced perceived predation risk more than flocking in larger groups. Food abundance had minor effects, varying flock sizes between the two patches with food, under high food availability conditions when population size was high, probably due to social cohesion effects. Our results suggest that: (1) this species has an inverted‐U food intake–group size relationship with a range of intake‐maximizing flock sizes rather than a single peak, (2) the presence of a near refuge modifies the expected benefits of group patch exploitation under high predation risk, and (3) an increase in population size would more likely be translated into rapid increases in the size of the flocks rather than in more new flocks.  相似文献   

9.
Blue jays (Cyanocitta cristata) were trained to hunt for non-cryptic moths, presented in projected images. On each trial, the jays chose one of two patches to hunt in: (1) a uniform, ‘non-depleting’ patch with constant prey density of 0·25; or (2) a ‘depleting’ patch in which prey density changed during the foraging bout. In the depleting patch, the initial prey density was 0·50, declining to zero in a single step part-way through each foraging bout (session). The patch choices of the jays were greatly affected by these conditions. The jays chose the depleting patch early in the session, and then switched to the uniform patch. They obtained nearly all of the prey available. Analysis of the events preceding switches between patches suggested that the jays used different rules to switch out of each of the two patches.  相似文献   

10.
The benefit of producer (searches for own food) or scrounger (exploits the others’ food discoveries) foraging tactic in a group of socially feeding animals may depend on where the individual searches for food within the group. Scrounging may be more advantageous in the centre of the group, having more individuals around to join, while producing may be more beneficial at the edges, where more unexplored food patches may be found. This study shows within‐flock position correlates with foraging tactic use of feeding birds in socially foraging tree sparrows, Passer montanus. Sparrows staying closer to the centre of the flock found their food patches more frequently by joining (i.e. use more frequently the scrounging tactic) than those staying toward the edges. To our knowledge this is the first field study demonstrating the relationship between spatial position and foraging tactic use. We investigated this relationship under different perceived predation hazard, and found that under elevated risk of predation, central individuals may increase their use of joining more than individuals on the periphery of the flock. Moreover, we show that extremely specialized use of searching tactics may be very infrequent in tree sparrows. As both within‐flock position and search tactic use can be altered very quickly and without leaving the flock, individuals may easily alter them in order to adjust their behaviour.  相似文献   

11.
Summary We examined whether individual cattle egrets (Bubulcus ibis) base their decisions of where to forage, and how long to stay in a patch, on the behavior of other flock members. Cattle egrets commonly forage in flocks associated with cattle and capture prey at higher rates when they do not share a cow with another egret. Foraging egrets provide cues of the location of prey and their success in capturing prey. Therefore, there is the possibility of information transfer between egrets in a flock. We predicted that egrets should only move to occupied patches when the resident was capturing enough prey that it is profitable for the invader to share the patch or take over the patch. However, egrets did not seem to decide where to forage based on neighbors' rates of energy intake, but rather on the presence or absence of conspecifics in a patch. We also predicted that an egret should remain in a patch until its rate of energy intake dropped to or below the average rate for other egrets within the flock. However, egrets that were foraging more efficiently than the average rate for the flock switched patches sooner than less efficient foragers. Egrets did not appear to increase foraging success by gaining information on patch quality from neighbors.  相似文献   

12.
Although many group-foraging models assume that all individuals search for and share their food equally, most documented instances of group foraging exhibit specialized use of producer and scrounger strategies. In addition, many of the studies have focused on groups with strong individual asymmetries exploiting food that is not easily divisible. In the present study we describe individual foraging behavior of relatively nonaggressive flock foragers exploiting divisible clumps of food. Two experiments, one with flocks of spice finches and another with flocks of zebra finches, suggest that divisibility of food patches may have important consequences for social foraging behavior. Neither dominance nor the distribution and quality of food patches affect the relative advantage that producing individuals enjoy over those that scrounge. Specialized producers and scroungers are absent from flocks of both species. Systems where patches are shared may differ fundamentally from those where patches are monopolized by scroungers.  相似文献   

13.
Food patch use by Japanese monkeys was examined using an operant conditioning procedure. Modified progressive ratio schedules, in which the probability of reinforcement decreases exponentially with the number of bar presses, were presented to 2 Japanese monkeys. Two types of schedule were used in each experimental session. One represented high quality food patches, where the probability of reinforcement was twice as high as in the other, which represented low quality food patches. The number of bar presses in each food patch was counted. Monkeys responded more frequently in high quality patches. The probability of reinforcement for the last response in each patch was the same in both types of schedule. The number of responses increased with a decrease in the occurrence of high quality patches, and with an increase in the inter-patch time interval. These results are in agreement with the predictions of Charnov’s marginal value theorem (Charnov, 1976). The pattern of patch use by monkeys observed in this study is discussed in terms of optimal foraging strategy.  相似文献   

14.
Animals have been assumed to employ an optimal foraging strategy (e.g., rate-maximizing strategy). In patchy food environments, intake rate within patches is positively correlated with patch quality, and declines as patches are depleted through consumption. This causes patch-leaving and determines patch residence time. In group-foraging situations, patch residence times are also affected by patch sharing. Optimal patch models for groups predict that patch residence times decrease as the number of co-feeding animals increases because of accelerated patch depletion. However, group members often depart patches without patch depletion, and their patch residence time deviates from patch models. It has been pointed out that patch residence time is also influenced by maintaining social proximity with others among group-living animals. In this study, the effects of maintaining social cohesion and that of rate-maximizing strategy on patch residence time were examined in Japanese macaques (Macaca fuscata). I hypothesized that foragers give up patches to remain in the proximity of their troop members. On the other hand, foragers may stay for a relatively long period when they do not have to abandon patches to follow the troop. In this study, intake rate and foraging effort (i.e., movement) did not change during patch residency. Macaques maintained their intake rate with only a little foraging effort. Therefore, the patches were assumed to be undepleted during patch residency. Further, patch residence time was affected by patch-leaving to maintain social proximity, but not by the intake rate. Macaques tended to stay in patches for short periods when they needed to give up patches for social proximity, and remained for long periods when they did not need to leave to keep social proximity. Patch-leaving and patch residence time that prioritize the maintenance of social cohesion may be a behavioral pattern in group-living primates.  相似文献   

15.
Steven L. Lima 《Oecologia》1983,58(2):232-237
Summary I describe an artificial patch system that was used to study the foraging behavior of free-roaming downy woodpeckers (Picoides pubescens) in a woodlot in southeastern Michigan. The artificial patches used were thin logs into which were drilled small holes to hold food items (bits of sunflower seed kernels). Downy woodpeckers would systematically search the holes of a patch for food items and thus by manipulating the food distribution within the patches, the birds could be made to experience differing rates of energy intake while foraging.Simple deterministic theories of optimal foraging in patchy environments indicate that an optimal forager, who experiences a decreasing rate of energy intake while foraging in a patch, should leave a patch when its rate of energy intake falls below the average intake rate for the overall environment. In other words, an optimal forager is continually assessing the quality of a patch and makes decisions as to when to leave a patch via its energy intake rate. When the downy woodpeckers studied could encounter any one of several types of patches each with differing, decreasing rates of energy intake, they followed a patch quality assessment strategy similar to that suggested by theory. Upon encountering a single type of patch for a number of consecutive days, however, the birds appeared to forage according to prior expectations of patch quality and not according to a quality assessment strategy based on energy intake rates. The observed expectations were not related to the number of food items per patch but they appeared to be based on expectations of when or where to leave a patch.  相似文献   

16.
1. In environments in which resources are distributed heterogeneously, patch choice and the length of time spent on a patch by foragers are subject to strong selective pressures. This is particularly true for parasitoids because their host foraging success translates directly into individual fitness. 2. The aim of this study was to test whether: (i) females of the parasitoid Ibalia leucospoides (Hymenoptera: Ibaliidae) can discriminate among patches according to host numbers; (ii) the surrounding context affects the initial choice of patch, as well as time spent on patch; and (iii) the perceived quality of a given patch is affected by the quality of the surrounding patches. 3. Each female was randomly exposed to one of three different three‐patch environments which differed in host number per patch, mean environment host number and host distribution among patches. For each treatment level, the first patch chosen and the time allocated to each patch visited by the female were recorded. 4. Females of I. leucospoides were able to discriminate different levels of host numbers among patches from a distance. The patch bearing the highest number of hosts was, predominantly, the first choice. Patch host number in association with mean habitat profitability influenced the length of time spent on the first patch visited. By contrast, variance in habitat profitability did not influence time allocation decisions. Contrary to the study prediction, there were no significant habitat‐dependent time allocation differences among patches holding the same number of hosts. 5. The results indicate that, for I. leucospoides, patch exploitation decisions are partially influenced by information obtained from the habitat as a whole, a behaviour that may prove to indicate adaptive ability in highly patchy environments, as well as suggesting the presence of good cognitive abilities in this parasitoid species.  相似文献   

17.
Animals foraging in a heterogeneous environment may combine prior information on patch qualities and patch sample information to maximize intake rate. Prior information dictates the long-term expectations, whereas prior information in combination with patch sample information determines when to leave an individual food patch. We examined patch use behaviour of benthic feeding fish in their natural environment at different spatial scales to test if they could determine patch quality and if patch use behaviour was correlated with environmental quality. In seven lakes along a gradient of environmental quality (measured as maximum benthivore size), we made repeated measurements of giving-up density (GUD) in artificial food patches of different qualities. At the largest spatial scale, between lakes, we tested if giving-up densities revealed the long-term growth expectation of benthic fish. At the local scale of patches and micro patches we tested for the ability of benthic fish to assess patch quality, and how this ability depended on the patch exploitation levels between the different lakes. We found that GUD was positively related to maximum size of bream, suggesting that short-term behavioural decisions reflected long-term growth expectations. Benthic fish discriminated between nearby rich and poor patches, but not between rich and poor micropatches within a food patch. This suggests that the foraging scale of benthic fish lies between the patch and micro patch scale in our experiments. We conclude that patch use behaviour of benthic fish can provide a powerful measure of habitat quality that reveals how benthic fish perceive their environment.  相似文献   

18.
Effect of Group Size on Feeding Rate when Patches are Exhaustible   总被引:1,自引:1,他引:0  
One benefit of group foraging is that individual foragers can join the food discoveries of companions and thus increase encounter rate with food patches. When food patches are exhaustible, however, individual shares of each patch will decrease with group size negating the effect of increased encounter rate. Mean feeding rate may actually decrease with group size as a result of aggression or time wasted joining already depleted patches, or when searching to join the food discoveries of others, which is referred to as scrounging, precludes finding food. I examined the relationship between mean feeding rate and group size in captive flocks of zebra finches (Taenopygia guttata) foraging for small clumps of seeds. Finches in groups of two or four fared better than solitary birds in terms of mean feeding rate despite the fact that birds in groups scrounged a large proportion of their food. Solitary birds initiated feeding activity after a longer delay, which led to their lower success. Early departures by food finders from food patches joined by others may have lessened the impact of scrounging on mean feeding rate. As a result of benefits from the presence of companions, group foraging in zebra finches appears a viable alternative to foraging alone despite the cost of sharing resources.  相似文献   

19.
The influence of risk on the selection of foraging patches by young-of-year black surfperch, Embiotoca jacksoni Agassiz, was investigated by laboratory and field experiments. These foragers harvest crustacean prey from a variety of benthic algal substrata. In field environments, patch types vary in two ways. First, substrata differ in structural complexity and probably afford different degrees of protection from predators. Second, substratum types vary in prey richness. There was no correlation between structural complexity and prey richness, and either or both factors could be a component of foraging patch value. Each patch is small and individual foragers are simultaneously confronted with arrays of patches encompassing the full range of variation in structure and prey richness. Furthermore, a major predator of young-of-year black surfperch, the kelp bass, Paralabrax clathratus (Girard), is patchily distributed in space and time. Thus similar arrays of patch types can be characterized by different levels of overall risk. Risk to foragers is dependent on light level as well as the presence and density of predators.The interplay between food quality and shelter potential in influencing patch choice was examined under different regimes of risk. Both laboratory and field experiments indicated patch preference was based primarily on food quality. However, the physical structure of a patch did become a component of patch choice as risk increased. The relative value of physical structure under high risk was dependent on the prey richness of a patch; food-poor substrata with high shelter potential remained unfavored even in situations of high risk.  相似文献   

20.
Steven L. Kohler 《Oecologia》1984,62(2):209-218
Summary The search behavior of the grazing stream insect Baetis tricaudatus (Ephemeroptera: Baetidae) was examined in field and laboratory experiments. Regardless of food abundance in experimental habitats, nymphs spent significantly more time in food patches than predicted if they had moved randomly with respect to patches. A significant reduction in movement rate within patches relative to movement rate between patches largely accounted for these results. The movement pattern within patches was highly systematic and in agreement with predictions of optimal foraging theory since food was uniformly distributed within patches. Between-patch search movements were affected by food abundance in the most recently grazed patch. Search intensity after departure from a patch was positively related to food abundance in the patch while movement rate after patch departure was inversely related to patch food level. These effects produced between-patch movement patterns that were suboptimal in the experimental habitats because they resulted in revisitation of previously depleted patches. However, differences between experimental and natural habitats in the spatial occurrence of patch types suggest that Baetis between-patch search behavior may be adaptive in natural habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号