首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本试验旨在分析牦牛(Bos grunniens)肌细胞增强因子2C(myocyte enhancer factor 2C,MEF2C)基因的分子特征和表达规律,探索其影响牦牛肌肉发育的作用机制.试验以大通牦牛肌肉组织cDNA为模板,采用PCR扩增技术扩增牦牛MEF2C基因,用DNAStar,ExPASy,ABCpred等生物信息学软件分析MEF2C基因序列和其编码的蛋白质结构,利用实时荧光定量PCR技术(RT-qPCR)检测了 MEF2C基因的表达情况.试验克隆获得的牦牛MEF2C基因编码区全长1 302 bp,编码433个氨基酸;蛋白质结构预测结果显示,MEF2C蛋白具有30h的半衰期,为亲水性碱性蛋白,没有信号肽但拥有跨膜结构.系统关系中牦牛与普通牛的亲缘关系最为接近,与小鼠亲缘关系较远.组织表达谱结果显示,MEF2C基因在牦牛7个组织中都有表达且在臀二头肌组织中表达量最高;不同时期MEF2C基因表达情况为胎牛>成年牛>6月龄牛.研究结果将为进一步探讨MEF2C基因在牦牛肌肉发育中的作用提供科学依据,同时也为解析牦牛肌肉发育的分子机制提供数据支撑.  相似文献   

2.
旨在克隆获得牦牛纤维蛋白原γ链(FGG)基因,明确其在组织中的表达特性,探讨FGG对母牦牛繁殖的影响。采集母牦牛的心、肝、脾、肺、卵巢、输卵管和子宫等组织样以及颗粒细胞,利用RT-PCR克隆FGG基因并利用RT-qPCR和免疫组化检测其组织表达。获得到牦牛FGG基因cDNA序列,编码区全长1 332 bp,编码443个氨基酸,FGG蛋白属于酸性亲水稳定蛋白。FGG基因核苷酸序列进化树显示牦牛先与黄牛聚为一类。RT-qPCR显示FGG基因在检测的7个组织均有表达,肝脏表达量最高,显著高于其他组织(P<0.05);在卵泡不同发育阶段的颗粒细胞中均有表达,且大卵泡颗粒细胞表达量最高,显著高于其他发育阶段(P<0.05);妊娠期卵巢和子宫中表达量显著高于空怀期(P<0.05)。IHC显示FGG蛋白主要在卵巢颗粒细胞、卵泡腔、输卵管黏膜和子宫内膜中表达。牦牛FGG基因在物种间具有较高的保守性,组织表达广泛,可能在牦牛繁殖调控中发挥着重要作用。  相似文献   

3.
旨在对牦牛CAV-3基因进行克隆、生物信息学分析,并对其在牦牛组织中的表达规律进行初步研究。根据Gen Bank数据库中已知的黄牛CAV-3基因的m RNA序列并设计特异性引物,应用RT-PCR技术克隆牦牛CAV-3基因的编码区。运用生物信息学方法,分析并预测牦牛Caveolin-3蛋白的理化性质、疏水性、蛋白结构域以及蛋白质二级结构。通过半定量PCR技术检测CAV-3基因m RNA在牦牛和黄牛各组织中的表达;利用实时荧光定量PCR技术检测牦牛和黄牛肌肉组织中CAV-3基因m RNA表达水平。牦牛CAV-3的编码区全长631 bp,共编码151个氨基酸。CAV-3在牦牛肺、脾脏、肾脏、肝脏、卵巢组织中均不表达,仅在心脏和肌肉组织中表达,且在心脏组织的表达水平高于肌肉组织,CAV-3基因在黄牛各组织中的表达结果与牦牛一致。CAV-3基因在牦牛肌肉中的表达低于黄牛肌肉组织,但差异不显著(P0.05)。  相似文献   

4.
地西泮结合抑制因子(Diazepam binding inhibitor,DBI)与酰基辅酶A具有高亲和力,在动物组织中广泛存在,与脂肪酸代谢、类固醇激素合成密切相关。为研究DBI基因的分子特征及该基因在乳腺发育中的作用,对牦牛DBI基因编码区进行克隆,进行生物信息学分析;采用实时荧光定量PCR (Quantitative real-time PCR,qPCR)、蛋白免疫印迹技术(Western blotting,WB)和免疫组织化学(Immunohistochemistry,IHC)方法对牦牛泌乳前期、泌乳期和干乳期的乳腺组织中DBI的相对表达量和表达部位进行研究。DBI序列分析显示:牦牛DBI基因编码区序列长264 bp,编码87个氨基酸残基,与牛的同源性高达99.62%;qPCR数据表明:牦牛泌乳前期乳腺组织中DBI基因的相对表达量显著高于泌乳期和干乳期(P< 0.05);WB结果显示:牦牛泌乳前期乳腺组织中DBI蛋白的表达量最高,干乳期次之,泌乳期最低(P< 0.05);IHC结果表明:不同发育时期的牦牛乳腺组织中DBI的表达部位并无明显差异,主要表达于乳腺腺泡上皮细胞、导管上皮细胞及小叶间质细胞。DBI在不同发育时期牦牛乳腺组织中的相对表达量具有明显差异(P< 0.05),揭示DBI可能参与牦牛乳腺发育的过程,这为进一步探究DBI基因在生物体中的作用提供相应的理论参考。  相似文献   

5.
旨在探讨牦牛TNFAIP6基因的序列特征,比较分析其在牦牛不同组织以及发情周期卵巢中的时序表达差异性。采集健康雌性牦牛的心脏、肺脏、脾脏、肾脏、肝脏、子宫、小肠、胃、肌肉和不同发情期的卵巢组织,提取各组织总RNA和总蛋白,通过RT-PCR技术克隆获得牦牛TNFAIP6基因序列并对其进行生物信息学分析,用半定量PCR检测其在牦牛不同组织中的表达水平,Western blot和qRT-PCR法分别检测其在不同发情期牦牛卵巢中的蛋白和mRNA表达水平,并进行统计学分析。克隆获得牦牛TNFAIP6基因CDS区全长830 bp,共编码279个氨基酸。蛋白质分析显示,TNFAIP6蛋白为亲水酸性稳定蛋白,无跨膜结构但有信号肽,其中包含Link和CUB两个结构域,其二级结构和三级结构主要由无规卷曲和α-螺旋组成。通过同源性比对分析,发现牦牛TNFAIP6基因与野牦牛和黄牛的同源性较高。半定量PCR结果显示,TNFAIP6基因在牦牛各组织中均有表达,其中在卵巢、子宫、脾脏和肌肉组织中表达显著高于其他组织。qRT-PCR结果显示,TNFAIP6基因在卵泡期卵巢中的表达水平极显著高于其他两个时期(P0.01),而红体期与黄体期的表达水平差异不显著(P0.05)。Western blot结果与qRT-PCR结果基本一致。提示TNFAIP6基因可能参与牦牛卵巢活动调控,为进一步探讨TNFAIP6基因在牦牛卵巢活动中的作用机制提供基础资料。  相似文献   

6.
[目的]克隆中华鳖IGFBP1 mRNA基因,分析基因生物信息,检测基因在胚胎和组织中表达情况。[方法]从中华鳖转录组中发掘IGFPB1 mRNA基因,并分析基因序列物信息;利用RT-PCR技术,从肝脏组织克隆IGFPB1c DNA基因,并检测其在胚胎和几种组织中的表达情况。[结果]从转录组中发掘到中华鳖IGFPB1 mRNA基因,基因长3 410 bp,包含81 bp的5’UCR序列,2 531 bp的3’UCR序列,798 bp开放阅读框,编码266个氨基酸,蛋白质分子量29.1 k Da,预测IGFPB1蛋白有1个α结构;对其构建的氨基酸序列系统进化树与传统形态分类相吻合;并在中华鳖受精卵孵化30d和45d的胚胎组织及300日龄的肝脏、肌肉和肾脏组织均检测到基因的表达。[结论]克隆到中华鳖IGFBP1基因,检测到该基因在30 d后的胚胎组织及300日龄的3种组织存在表达。  相似文献   

7.
以牦牛血小板活化因子受体(Platelet-activating factor receptor,PAFR)基因为研究对象,采取西宁家养牦牛子宫为材料,采用RT-PCR技术克隆牦牛PAFR基因,对其进行生物信息学分析,并采用QRT-PCR方法定量检测PAFR在牦牛子宫不同时期的表达。结果表明,牦牛PAFR基因编码区长1 029 bp,编码342个氨基酸;氨基酸序列与黄牛同源性最高为99.7%,与非洲爪蟾蜍同源性最低为59.1%,表明PAFR氨基酸在进化过程中具有保守性;其编码蛋白的氨基酸序列有5个跨膜区域,推测其可能为跨膜蛋白;具有亲水性;未发现信号肽片段;含有G蛋白偶联受体家族结构域;QRT-PCR检测PAFR在牦牛子宫中表达,妊娠期最高,卵泡期最低,黄体期居中,揭示其与胚胎附植,妊娠维持有关。  相似文献   

8.
目的:克隆BALB/c小鼠线粒体转录终止因子2(Mterf2)基因cDNA编码区序列,分析Mterf2 mRNA和蛋白质在小鼠大脑、心、脾、肺、肾、肝、胰腺、肌肉和睾丸等9种组织中的表达情况。方法:以BALB/c小鼠肝组织总RNA为模板,RT-PCR扩增Mterf2基因cDNA编码区序列,将其克隆至pMD-19T载体,通过菌落PCR、双酶切和DNA序列测定进行验证;采用MEGA 6.0软件构建Mterf2基因系统发生树;通过Northern印迹和qRT-PCR方法检测Mterf2基因mRNA在小鼠各组织中的表达量;通过Western印迹检测MTERF2蛋白在小鼠多个组织中的表达量。结果:克隆获得BALB/c小鼠Mterf2基因cDNA的编码区序列,其全长1158 bp,编码385个氨基酸残基,克隆到的序列与GenBank参考序列的同源性为100%,无任何碱基突变和移码突变。小鼠Mterf2基因与大鼠Mterf2基因的同源性最高,达到91.0%,在系统发生树上聚类为一簇。Mterf2基因mRNA和蛋白质在BALB/c小鼠心、脑、肝和肾等新陈代谢旺盛的组织中表达丰度最高,其次是在胰腺、睾丸和肌肉组织,而在脾和肺组织中表达相对较低。结论:克隆了BALB/c小鼠Mterf2基因cDNA的编码区序列,并进行了多种组织的表达特征分析,为后续研究Mterf2基因在实验动物体内的生理功能奠定了基础。  相似文献   

9.
刺鼠信号蛋白(Agouti)是哺乳动物和鸟类黑色素合成过程中的重要调控因子,影响动物的体色(毛色)。为研究Agouti在两栖动物体色形成过程中的作用,本研究利用PCR技术扩增得到大鲵Andrias davidianus的Agouti基因部分cDNA序列并进行了相关的生物信息学分析,进一步使用实时荧光定量PCR检测了大鲵Agouti基因在皮肤、肝脏等10个组织和器官中的表达情况,并检测了4种不同体色大鲵皮肤组织中Agouti基因的表达量。同时采用直接测序法,比较了不同体色大鲵Agouti基因编码区的序列差异。结果显示,大鲵Agouti基因cDNA序列长1 068 bp,开放阅读框399 bp,编码132个氨基酸残基。蛋白质同源性分析表明,大鲵Agouti蛋白具有与其他物种一致的保守Agouti结构域,其蛋白质序列与两栖爬行类序列相似性较高,与哺乳动物和鸟类相似性较低。系统进化分析显示,大鲵Agouti基因与高山倭蛙Nanorana parkeri、美国短吻鳄Alligator mississippiensis、中华鳖Pelodiscus sinensis等物种的亲缘关系较近。实时荧光定量PCR分析表明,Agouti基因mRNA在大鲵不同组织中均有表达,皮肤中的表达量最高。在4种不同体色大鲵皮肤组织中,黄色皮肤中的Agouti基因表达量高于其他体色。不同体色大鲵Agouti基因编码区序列一致。大鲵Agouti基因独特的序列特征及其表达的组织特异性暗示了其在两栖动物体色形成过程中可能具有与其他物种不同的调控机制。这些结果为进一步研究Agouti在大鲵体色形成过程中的作用提供了基础资料。  相似文献   

10.
牦牛CSRP3基因的克隆及组织表达分析   总被引:1,自引:0,他引:1  
CSRP3基因(Cysteine and glycine-rich protein 3,CSRP3)编码CRP3蛋白,是一个肌发生的正调节因子,可通过多种方式在肌肉发育和肌肉细胞结构维持中起重要作用。通过对牦牛CSRP3基因进行克隆及组织表达谱分析,为后续提高牦牛肉品质的研究提供基础数据。采用RT-PCR方法克隆牦牛CSRP3基因CDS区;再对其进行序列分析及蛋白结构和功能预测等生物信息学分析;最后利用实时荧光定量PCR技术检测该基因在牦牛不同组织中的表达量。牦牛CSRP3基因CDS区长585 bp,编码194个氨基酸;CSRP3基因的系统进化树结果显示,牦牛与黄牛的亲缘性最近,其次是绵羊。牦牛CSRP3基因编码的蛋白为偏碱性不稳定亲水蛋白,无跨膜结构和信号肽,为非分泌蛋白,含有磷酸化位点22个,N-糖基化位点2个,O-糖基化位点7个;存在两个LIM结构域,属于LIM结构域蛋白质超家族成员,主要分布于细胞核中;二级结构以无规卷曲为主,三级结构的最佳模型为1b8t.1.A;实时荧光定量PCR结果显示,牦牛CSRP3基因在臀大肌中有较高表达量。生物信息学分析结果显示,CRP3蛋白含有两个LIM结构域,主要分布在细胞核中,实时荧光定量PCR结果显示牦牛CSRP3基因在臀大肌中具有较高表达量,为牦牛CSRP3基因在牦牛肉品质方面的调控机制研究提供了基础数据。  相似文献   

11.
FAF1(Fas-associated factor-1)在多种细胞中可与Fas蛋白结合,介导细胞凋亡的启动,其基因突变可导致分裂期胚胎死亡。旨在探索牦牛FAF1基因的分子特征及其在不同阶段的生物学作用。试验选取雌性牦牛3个不同时期(卵泡期、黄体期和妊娠期第3个月,以下将妊娠期第3个月简称为妊娠期)的卵巢、输卵管和子宫,克隆牦牛FAF1基因,采用实时荧光定量PCR(qRT-PCR)、免疫组织化学和Western blot(WB)方法对其基因和蛋白的表达水平进行检测和定位。成功克隆出牦牛FAF1基因的编码区(CDS),长度为1 953 bp(GenBank登录号:MK416195),编码650个氨基酸,基因特征分析显示该基因具有高度保守性,其编码的蛋白为含5个蛋白结合位点的非跨膜、可溶性蛋白,主要分布于细胞核(52.2%)、线粒体(26.1%)、细胞质(13.0%)、高尔基体(4.3%)、细胞骨架(4.3%)。qRT-PCR结果显示:卵巢中FAF1基因在卵泡期表达最高,妊娠期次之,黄体期最低;输卵管中黄体期最高,子宫中卵泡期最高,妊娠期次之,黄体期最低;蛋白水平显示:妊娠期输卵管和子宫FAF1蛋白相对表达量显著高于卵泡期和黄体期,卵巢在黄体期的表达量最高,卵泡期次之,妊娠期最低。免疫组织化学(Immunohistochemistry,IHC)结果显示不同阶段FAF1蛋白在同一组织中表达部位并无明显的差异,在卵巢中主要表达部位为卵巢生殖上皮、颗粒细胞、卵泡膜细胞和黄体细胞(黄体期);在输卵管中主要表达部位为黏膜上皮细胞;在子宫中主要表达部位为子宫内膜细胞、子宫腺。FAF1基因和蛋白的表达存在显著差异,揭示其对牦牛的生殖生理调控具有重要意义。  相似文献   

12.
利用基因特异引物YMTSP1和YMTSP2,通过RT-PCR从牦牛肝脏组织RNA中克隆出了牦牛MT-Ⅰ(GenbankAccessionNo:AY513744)和MT-Ⅱ(GenbankAccessionNo:AY513745)基因编码区全长。将牦牛MT-Ⅰ和MT-ⅡcDNA序列在CBI上进行同源性搜索发现,牦牛MT-Ⅰ/-Ⅱ编码区序列在不同哺乳动物中相当保守。牦牛MT-Ⅰ和MT-Ⅱ编码的MT-Ⅰ和MT-Ⅱ蛋白分别由61个氨基酸组成,其具有保守的短肽结构如:C-X-C,C-C-X-C-C,C-X-X-C等,其决定MT蛋白分子的整个三维结构,在分子进化上十分保守。同时对牦牛MT的疏水性和跨膜区分析表明,牦牛MT蛋白可能不存在跨膜区,也不存在信号肽,是1种非分泌蛋白。并通过同源比较模建,预测和构建了牦牛MT-Ⅰ和MT-Ⅱ蛋白的分子空间结构,表明牦牛MT-Ⅰ和MT-Ⅱ由α-和β-两个结构域组成,在α-结构域含有5个Cys短肽结构,β-结构域有4个Cys短肽结构,且2个结构域由保守的三肽序列KKS相连。  相似文献   

13.
为探究HYOU1基因在牦牛中的组织表达谱,通过对西藏牦牛HYOU1基因的CDS区进行克隆测序,分析该基因的结构和功能,采用RT-PCR技术检测黄牛和牦牛肺脏、心脏、肝脏、乳腺、大脑及肌肉中HYOU1基因的相对表达量。结果表明:(1)HYOU1基因CDS区长度为3 006 bp,其中A、G、C和T含量分别为25.0%、31.1%、26.7%和17.1%,存在一定碱基偏好性;发现1个(ACG→ACA)SNP位点,为同义突变。(2)生物信息学分析表明该蛋白呈中性,为较不稳定、亲水性分泌信号蛋白;存在一个跨膜螺旋(TMhelix)区位于13-35氨基酸位置;二、三级蛋白结构分析发现其主要的空间构象为:无规则卷曲及α-螺旋。(3)聚类分析显示,西藏牦牛与野牦牛的遗传距离最近,与瘤牛及普通牛的遗传距离次之,与水牛最远。(4)RT-PCR结果显示HYOU1基因在黄牛和牦牛肝脏、乳腺、肺脏、大脑、心脏、肌肉6个组织中均有表达,且相对表达量依次递减;在相同组织中,黄牛组织的表达量均显著高于牦牛组织中的表达量(P0.05),其中黄牛肝脏组织的表达量为牦牛表达量的4.4倍。  相似文献   

14.
旨在克隆内蒙古白绒山羊翻译控制肿瘤蛋白(Translationally controlled tumor protein,TCTP)基因并分析其表达模式。采用RT-PCR技术扩增TCTP基因编码区cDNA序列,将得到的基因cDNA序列及其编码的氨基酸序列进行生物信息学分析,利用定量RT-PCR方法检测TCTP基因在绒山羊不同组织中的表达特异性。获得的内蒙古白绒山羊TCTP基因编码区cDNA序列全长519 bp,包含了完整的ORF,编码172个氨基酸残基组成的蛋白质。核苷酸序列与绵羊、牛、猪、人、猴及大鼠的同源性在99%-95%之间。生物信息学分析表明,编码的蛋白质理论分子质量19.6 kD,等电点(pI)4.673,含有一个N端糖基化位点,一个蛋白激酶C磷酸化位点,3个酪蛋白激酶Ⅱ磷酸化位点,定位于细胞质中。定量RT-PCR方法检测表明,TCTP基因在绒山羊肾脏、肌肉、胰腺、肝脏、睾丸和脑组织中均有表达,其中在肝脏中的表达量较高,在脑中表达量较低。  相似文献   

15.
目的获得版纳微型猪近交系(BMI)生长激素受体基因(GHR)序列,通过生物信息学分析预测GHR功能并进行GHR mRNA多组织表达谱分析。方法以版纳微型猪近交系的肝脏组织为材料提取RNA,RTPCR方法扩增GHR基因编码区序列,将序列连接至pMD18-T载体进行克隆、测序和生物信息学分析;半定量PCR检测GHR mRNA在BMI不同组织中表达量的差异。结果克隆出了BMI GHR编码区序列,提交GenBank获得登录号KC999114。该基因CDS长1917 bp,编码638个氨基酸。生物信息学分析表明,与长白猪的GHR序列相比BMI存在4处氨基酸替换,分别为p.E381D、p.A409S、p.L556V和p.A580G,均发生在胞内域。GHR基因多组织表达谱分析显示:GHR mRNA几乎在各组织中均有表达,在肌肉中表达量最高,在小肠、心、肝、神经纤维、脾、卵巢中表达量较高,在肺、胃、大脑、胰和肾中的表达量较低。结论成功克隆了版纳微型猪近交系GHR全长编码区序列,进行了生物信息学功能分析和组织表达谱分析,为进一步阐明版纳微型猪近交系生长矮小机理奠定了基础。  相似文献   

16.
牦牛MT-I/-Ⅱ cDNA分子克隆及其蛋白质结构分析   总被引:2,自引:0,他引:2  
利用基因特异引物YMTSP1和YMTSP2,通过RT-PCR从牦牛肝脏组织RNA中克隆出了牦牛MT-Ⅰ(Genbank Accession NoAY513744)和MT-Ⅱ(Genbank Accession NoAY513745)基因编码区全长.将牦牛MT-Ⅰ和MT-Ⅱ cDNA序列在CBI上进行同源性搜索发现,牦牛MT-Ⅰ/-Ⅱ编码区序列在不同哺乳动物中相当保守.牦牛MT-Ⅰ和MT-Ⅱ编码的MT-Ⅰ和MT-Ⅱ蛋白分别由61个氨基酸组成,其具有保守的短肽结构如C-X-C,C-C-X-C-C,C-X-X-C等,其决定MT蛋白分子的整个三维结构,在分子进化上十分保守.同时对牦牛MT的疏水性和跨膜区分析表明,牦牛MT蛋白可能不存在跨膜区,也不存在信号肽,是1种非分泌蛋白.并通过同源比较模建,预测和构建了牦牛MT-Ⅰ和MT-Ⅱ蛋白的分子空间结构,表明牦牛MT-Ⅰ和MT-Ⅱ由α-和β-两个结构域组成,在α-结构域含有5个Cys短肽结构,β-结构域有4个Cys短肽结构,且2个结构域由保守的三肽序列KKS相连.  相似文献   

17.
蛋白磷酸酶2A(PP2A)参与细胞中蛋白质的可逆磷酸化作用,在磷酸化信号通路调控方面具有重要功能,其活性受蛋白磷酸甲酯酶-1(PME-1)和其他因素的调控。为阐明牦牛杂交雄性不育的分子机制,本研究从牦牛睾丸中克隆了PP2A催化亚基α基因(PPP2CA)和PME-1基因c DNA序列,编码区长度分别为930 bp和1 143 bp,编码的氨基酸序列保守;定量PCR检测显示,犏牛(n=7)睾丸中PPP2CA与PME-1基因的m RNA水平均极显著低于牦牛(n=13,P0.01)。根据本研究结果,推测犏牛睾丸中这2个基因的显著下调可能会影响一些重要信号通路,且与犏牛雄性不育有关。  相似文献   

18.
目的 获得版纳微型猪近交系(BMI)生长激素受体基因(GHR)序列,通过生物信息学分析预测GHR功能并进行GHR mRNA多组织表达谱分析.方法 以版纳微型猪近交系的肝脏组织为材料提取RNA,RT-PCR方法扩增GHR基因编码区序列,将序列连接至pMD18-T载体进行克隆、测序和生物信息学分析;半定量PCR检测GHR mRNA在BMI不同组织中表达量的差异.结果克隆出了BMI GHR 编码区序列,提交GenBank获得登录号KC999114.该基因CDS长1917 bp,编码638个氨基酸.生物信息学分析表明,与长白猪的GHR序列相比BMI存在4处氨基酸替换,分别为p.E381D、p.A409S、p.L556V和p.A580G,均发生在胞内域.GHR基因多组织表达谱分析显示:GHR mRNA几乎在各组织中均有表达,在肌肉中表达量最高,在小肠、心、肝、神经纤维、脾、卵巢中表达量较高,在肺、胃、大脑、胰和肾中的表达量较低.结论 成功克隆了版纳微型猪近交系GHR全长编码区序列,进行了生物信息学功能分析和组织表达谱分析,为进一步阐明版纳微型猪近交系生长矮小机理奠定了基础.  相似文献   

19.
褪黑素对调节季节性繁殖哺乳动物的生殖具有重要调节作用。其受体MTNR1a(Melatonin receptor 1a,褪黑素受体1a)主要参与昼夜节律和生殖调控,MTNR1b(Melatonin receptor 1b,褪黑素受体1b)与多种疾病发生密切相关。为了探讨褪黑素受体基因的生物学功能,本实验对牦牛不同组织中MTNR1a、MTNR1b基因的表达与定位情况进行了研究。采用qRT-PCR (Quantitative Real-Time PCR, qRT-PCR) 检测成年雄性牦牛各组织及不同发育阶段(30日龄,2岁、4岁、6岁和8岁龄)牦牛睾丸组织中MTNR1a、MTNR1b mRNA的表达规律,并运用免疫组化技术对不同年龄牦牛睾丸中MTNR1a、MTNR1b蛋白进行了定位研究。结果发现,MTNR1a mRNA在松果体组织中表达量最高,肺脏、肌肉和睾丸次之;随着年龄增加,MTNR1a mRNA在睾丸中的表达量逐渐升高,到4岁后表达量趋于平稳;MTNR1a蛋白在不同发育阶段牦牛睾丸组织中均有表达,圆形精子呈现较强的免疫阳性,其次为初级精母细胞;MTNR1b mRNA在松果体表达量最高(P<0.05),肾脏、肝脏和下丘脑次之;在不同年龄牦牛睾丸中MTNR1b mRNA均有表达,且随着年龄的增加表达量逐渐增加,在8岁时表达量最高;MTNR1b蛋白主要定位在圆形精子细胞中。MTNR1a、MTNR1b基因在牦牛不同组织及不同发育阶段睾丸中的广泛表达,揭示了其在雄性牦牛生殖等生理过程中的重要作用。  相似文献   

20.
目的克隆广西巴马小型猪PGC-1α基因编码区(CDS)序列,利用RT-PCR和QRT-PCR方法分析PGC-1αmRNA组织表达情况。方法本实验以广西巴马小型猪背最长肌cDNA为模版,PCR扩增PGC-1α基因CDS序列,将其连接至pEASY-T5载体,转染细菌、验证和序列测定;通过RT-PCR半定量和QRT-PCR实时荧光定量检测PGC-1α基因在小型猪多个组织中的表达情况。结果克隆获得广西巴马小型猪PGC-1α基因CDS序列,全长2391 bp,编码796个氨基酸,与参考序列的同源性为99.9%,两处碱基发生同义突变,分别是C-A1105和GA1524;PGC-1α基因在广西巴马小型猪心脏和肾脏中的表达丰度最高,其次是肝脏、皮下脂肪和背最长肌,而在胰腺中未检测到其表达。结论成功克隆了广西巴马小型猪PGC-1α基因编码区序列并进行了多种组织表达分析,为后续研究PGC-1α在小型猪2型糖尿病发生过程中作用途径打下基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号