首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of bacteria belonging to the PVC (Planctomycetes-Verrucomicrobia-Chlamydiae) super-phylum contain unusual ribosome-bearing intracellular membranes. The evolutionary origins and functions of these membranes are unknown. Some proteins putatively associated with the presence of intracellular membranes in PVC bacteria contain signal peptides. Signal peptides mark proteins for translocation across the cytoplasmic membrane in prokaryotes, and the membrane of the endoplasmic reticulum in eukaryotes, by highly conserved Sec machinery. This suggests that proteins might be targeted to intracellular membranes in PVC bacteria via the Sec pathway. Here, we show that canonical signal peptides are significantly over-represented in proteins preferentially present in PVC bacteria possessing intracellular membranes, indicating involvement of Sec translocase in their cellular targeting. We also characterized Sec proteins using comparative genomics approaches, focusing on the PVC super-phylum. While we were unable to detect unique changes in Sec proteins conserved among membrane-bearing PVC species, we identified (1) SecA ATPase domain re-arrangements in some Planctomycetes, and (2) secondary SecA_DEAD domain proteins in the genomes of some Planctomycetes, Verrucomicrobia, Proteobacteria, Nitrospirae and Chlorobi. This is the first report of potentially duplicated SecA in Gram-negative bacteria. The phylogenetic distribution of secondary SecA_DEAD domain proteins suggests that the presence of these proteins is not related to the occurrence of PVC endomembranes. Further genomic analysis showed that secondary SecA_DEAD domain proteins are located within genomic neighborhoods that also encode three proteins possessing domains specific for the Type I secretion system.  相似文献   

2.
Peptide fragments that exhibit antimicrobial activity in vitro have been shown to be produced by cleavage from the hydrophilic region near the N terminus of various vicilin proteins in plant seeds. Three peptide sequences identified in the hydrophilic region of vicilin seed proteins of Macadamia integrifolia and Theobroma cacao were predicted to exhibit antimicrobial activity based on sequence similarity to antimicrobial peptides that had been previously purified from macadamia kernels. Histidine-tagged versions of the putative antimicrobial peptides were expressed in Escherichia coli, purified, and demonstrated to have in vitro antimicrobial activity. There are many vicilin sequences in the growing plant genome sequence databases, and this expression method provides a high-throughput process for functionally testing the potential of internal peptide fragments of vicilins as novel antimicrobial molecules.  相似文献   

3.
Diseases caused by many Gram-negative bacterial pathogens depend on the activities of bacterial effector proteins that are delivered into eukaryotic cells via specialized secretion systems. Effector protein function largely depends on specific subcellular targeting and specific interactions with cellular ligands. PDZ domains are common domains that serve to provide specificity in protein-protein interactions in eukaryotic systems. We show that putative PDZ-binding motifs are significantly enriched among effector proteins delivered into mammalian cells by certain bacterial pathogens. We use PDZ domain microarrays to identify candidate interaction partners of the Shigella flexneri effector proteins OspE1 and OspE2, which contain putative PDZ-binding motifs. We demonstrate in vitro and in cells that OspE proteins interact with PDLIM7, a member of the PDLIM family of proteins, which contain a PDZ domain and one or more LIM domains, protein interaction domains that participate in a wide variety of functions, including activation of isoforms of protein kinase C (PKC). We demonstrate that activation of PKC during S. flexneri infection is attenuated in the absence of PDLIM7 or OspE proteins and that the OspE PDZ-binding motif is required for wild-type levels of PKC activation. These results are consistent with a model in which binding of OspE to PDLIM7 during infection regulates the activity of PKC isoforms that bind to the PDLIM7 LIM domain.  相似文献   

4.
李嵘  王喆之 《植物研究》2007,27(1):59-67
采用生物信息学的方法和工具对已在GenBank上注册的拟南芥、玉米、岩蔷薇、水稻、黄花蒿、亚麻等植物的萜类合成酶1-脱氧-D-木酮糖-5-磷酸还原异构酶的核酸及氨基酸序列进行分析,并对其组成成分、转运肽、跨膜拓朴结构域、疏水性/亲水性、蛋白质二级及三级结构、分子系统进化关系等进行预测和推断。结果表明:该类酶基因的全长包括5′、3′非翻译区和一个开放阅读框,无跨膜结构域,是一个具转运肽的亲水性蛋白,包括两个功能DXR结合motif及两个功能NADPH结合motif,α-螺旋和不规则卷曲是蛋白质二级结构最大量的结构元件,β-转角和β-折叠散布于整个蛋白质中,蛋白质的功能域在空间结构上折叠成“V”形,“V”形的两臂由N-端与C-端构成,“V”形的底部,是N 端臂与C-端臂的结合域。  相似文献   

5.
The merozoite cap protein-1 (MCP-1) of Plasmodium falciparum follows the distribution of the moving Junction during invasion of erythrocytes. We have cloned the gene encoding this protein from a cDNA library using a monoclonal antibody. The protein lacks a signal sequence and has no predicted trans-membrane domains; none of the antisera reacts with the surfaces of intact merozoites, indicating that the cap distribution is submembranous. MCP-1 is divided into three domains. The N-terminal domain includes a 52-amino-acid region that is highly conserved in a large family of bacterial and eukaryotic proteins. Based on the known functions of two proteins of this family and the pattern of amino acid conservation, it is predicted that this domain may possess oxido-reductase activity, since the active cysteine residue of this domain is invariant in all proteins of the family. The other two domains of MCP-1 are not found in any other members of this protein family and may reflect the specific function of MCP-1 in invasion. The middle domain is negatively charged and enriched in glutamate; the C-terminal domain is positively charged and enriched in lysine. By virtue of its positive charge, the C-terminal domain resembles domains in some cytoskeleton-associated proteins and may mediate the interaction of MCP-1 with cytoskeleton in Plasmodium.  相似文献   

6.
Lon ATP-dependent proteases are key components of the protein quality control systems of bacterial cells and eukaryotic organelles. Eubacterial Lon proteases contain an N-terminal domain, an ATPase domain, and a protease domain, all in one polypeptide chain. The N-terminal domain is thought to be involved in substrate recognition, the ATPase domain in substrate unfolding and translocation into the protease chamber, and the protease domain in the hydrolysis of polypeptides into small peptide fragments. Like other AAA+ ATPases and self-compartmentalising proteases, Lon functions as an oligomeric complex, although the subunit stoichiometry is currently unclear. Here, we present crystal structures of truncated versions of Lon protease from Bacillus subtilis (BsLon), which reveal previously unknown architectural features of Lon complexes. Our analytical ultracentrifugation and electron microscopy show different oligomerisation of Lon proteases from two different bacterial species, Aquifex aeolicus and B. subtilis. The structure of BsLon-AP shows a hexameric complex consisting of a small part of the N-terminal domain, the ATPase, and protease domains. The structure shows the approximate arrangement of the three functional domains of Lon. It also reveals a resemblance between the architecture of Lon proteases and the bacterial proteasome-like protease HslUV. Our second structure, BsLon-N, represents the first 209 amino acids of the N-terminal domain of BsLon and consists of a globular domain, similar in structure to the E. coli Lon N-terminal domain, and an additional four-helix bundle, which is part of a predicted coiled-coil region. An unexpected dimeric interaction between BsLon-N monomers reveals the possibility that Lon complexes may be stabilised by coiled-coil interactions between neighbouring N-terminal domains. Together, BsLon-N and BsLon-AP are 36 amino acids short of offering a complete picture of a full-length Lon protease.  相似文献   

7.
The Clostridium josui cipA and celD genes, encoding a scaffolding-like protein (CipA) and a putative cellulase (CelD), respectively, have been cloned and sequenced. CipA, with an estimated molecular weight of 120,227, consists of an N-terminal signal peptide, a cellulose-binding domain of family III, and six successive cohesin domains. The molecular architecture of C. josui CipA is similar to those of the scaffolding proteins reported so far, such as Clostridium thermocellum CipA, Clostridium cellulovorans CbpA, and Clostridium cellulolyticum CipC, but C. josui CipA is considerably smaller than the other scaffolding proteins. CelD consists of an N-terminal signal peptide, a family 48 catalytic domain of glycosyl hydrolase, and a dockerin domain. N-terminal amino acid sequence analysis of the C. josui cellulosomal proteins indicates that both CipA and CelD are major components of the cellulosome.  相似文献   

8.
The small leucine-rich repeat proteins, fibromodulin and osteoadherin, have N-terminal extensions with a variable number of O-sulfated tyrosine residues. This modification combined with a number of aspartic and glutamic acid residues results in a highly negatively charged domain of less than 30 amino acids. We hypothesized that this domain shares functional properties with heparin regarding binding to proteins and polypeptides containing clusters of basic amino acids. Two other family members, PRELP and chondroadherin, have distinctly different clusters of basic amino acids in their N and C termini, respectively, and PRELP is known to bind to heparin via this domain. Another heparin-binding protein is the cytokine Oncostatin M, with a different cluster of basic amino acids in its C terminus. We used polypeptides representing these basic domains in solid phase assays and demonstrate interactions with the negatively charged N-terminal domain of fibromodulin and full-length osteoadherin. The tyrosine sulfate domains also bound heparin-binding proteins such as basic fibroblast growth factor-2, thrombospondin I, MMP13, the NC4 domain of collagen IX, and interleukin-10. Fibronectin with large heparin-binding domains did not bind, neither did CILP containing a heparin-binding thrombospondin type I motif without clustered basic amino acids. Affinity depends on the number and position of the sulfated tyrosine residues shown by different binding properties of 10-kDa fragments subfractionated by ion-exchange chromatography. These interactions may sequester growth factors, cytokines, and matrix metalloproteinases in the extracellular matrix as well as contribute to its organization.The integrity of the extracellular matrix depends on a multitude of interactions between molecular constituents leading to the formation of major macromolecular assemblies important for tissue functions. A major component in most types of extracellular matrix is the network of fibrillar structures primarily composed of collagen I in fibrous tissues and bone, whereas cartilage contains the similar collagen II.These collagen fibrils contain a number of associated molecules, often bound to their surface. One such molecule is the distinct collagen IX, containing three triple helical domains each surrounded by non-triple helical domains. Another set of molecules binding to triple helical collagen is the members of the small leucine-rich repeat protein family, such as fibromodulin (1), lumican (2), decorin (3), biglycan (4), PRELP (5), chondroadherin (6), and possibly osteoadherin. The typical LRR3 protein contains 10–11 repeats of some 25 amino acids with leucine residues at conserved locations. This domain represents a common denominator for the family and contains structures providing for interaction with, e.g. triple helical collagen (79). The LRR proteins contain an extension at either the N- or C-terminal end or, in a few cases, at both ends. These extensions may contribute to a second function exemplified by PRELP, where the N-terminal with a stretch of clustered arginine residues provides binding to heparin/heparan sulfate containing optimally five or more disaccharides with three sulfate groups each (10). In decorin and biglycan, the N-terminal extension have substituents of glycosaminoglycan chains of dermatan/chondroitin sulfate that can contribute to collagen binding (11) as well as provide putative self interactions with a similar chain on another molecule. In particular, it has been shown that decorin and biglycan will bind via their protein core to the N-terminal globular domain of collagen VI (4) and direct the formation of the collagen VI-beaded filament network, provided that the glycosaminoglycan chains are intact.There are a number of proteins known to interact with heparin. Whereas heparin is not present in the extracellular matrix, these proteins may bind to stretches within the heparan sulfate chains enriched in disaccharides having high sulfate content. The heparan sulfate is found particularly as a component of cell surface proteoglycans such as glypicans (12) and syndecans (13) and of the extracellular matrix proteoglycans perlecan (14) and agrin (15). Important ligands for these chains are growth factors exemplified by members of the FGF family. Other molecules that bind to heparan sulfate include fibronectin, having two such domains with molecular weights of around 20,000 (16). Also several members of the metalloproteinase family contain heparin-binding motifs as do many cytokines.The most common heparin-binding sequence contains clusters of basic amino acids, often with additional proline residues. PRELP and chondroadherin as well as the other proteins mentioned represent examples having such sequences. A different type of motif, first found in thrombospondin I, contains consecutive repeats of a WXZ sequence, where the tryptophan may be mannosylated (17, 18). This is referred to as the thrombospondin type I motif heparin-binding structure. Thrombospondin I in addition contains a heparin-binding basic cluster of amino acids (19). CILP on the other hand only contains the thrombospondin type 1 motif. These domains can bind to heparin with high affinity, an interaction that can be disrupted by high salt.A very different type of extension is found in the N-terminal part of fibromodulin and osteoadherin. These proteins contain a number of tyrosine residues, which may and often do, carry a sulfate group. Thus, fibromodulin contains up to nine such residues and osteoadherin as many as eight, where six are located in the N-terminal and two in the C-terminal extension (20). Any given preparation contains molecules within the same species with a range of levels of O-sulfate-substituted tyrosine. The functional significances of these domains have been unknown. We now show that these domains can mimic heparin in several interactions.  相似文献   

9.
PE_PGRS proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mtb), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mtb, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mtb and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mtb. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism.  相似文献   

10.
The extracellular matrix (ECM) is a major mediator of multi-cellularity in the metazoa. Multiple ECM proteins are conserved from sponges to human, raising questions about the evolutionary origin of ECM. Choanoflagellates are the closest unicellular relatives of the metazoa and proteins with domains characteristic of metazoan ECM proteins have been identified from the genome-predicted proteome of the choanoflagellate Monosiga brevicollis. However, a systematic analysis of M. brevicollis secretory signal peptide-containing proteins with ECM domains has been lacking. We analysed all predicted secretory signal-peptide-containing proteins of M. brevicollis for ECM domains. Nine domains that are widespread in metazoan ECM proteins are represented, with EGF, fibronectin III, laminin G, and von Willebrand Factor_A domains being the most numerous. Three proteins contain more than one category of ECM domain, however, no proteins correspond to the domain architecture of metazoan ECM proteins. The fibronectin III domains are all present within glycoside hydrolases and none contain an integrin-binding motif. Glycosaminoglycan-binding motifs identified in animal thrombospondin type 1 domains are conserved in some M. brevicollis representatives of this domain, whereas there is little evidence of conservation of glycosaminoglycan-binding motifs in the laminin G domains. The identified proteins were compared with the predicted secretory ECM domain-containing proteins of the integrin-expressing filasterean, Capsaspora owczarzaki. C. owczarzaki encodes a smaller number of secretory, ECM domain-containing proteins and only EGF, fibronectin type III and laminin G domains are represented. The M. brevicollis and C. owczarzaki proteins have distinct domain architectures and all proteins differ in their domain architecture to metazoan ECM proteins. These identifications provide a basis for future experiments to validate the extracellular location of these proteins and uncover their functions in choanoflagellates and C. owczarzaki. The data strengthen the model that ECM proteins are metazoan-specific and evolved as innovations in the last common metazoan ancestor.  相似文献   

11.
Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition.  相似文献   

12.
One of the chitinase genes of Alteromonas sp. strain O-7, the chitinase C-encoding gene (chiC), was cloned, and the nucleotide sequence was determined. An open reading frame coded for a protein of 430 amino acids with a predicted molecular mass of 46,680 Da. Alignment of the deduced amino acid sequence demonstrated that ChiC contained three functional domains, the N-terminal domain, a fibronectin type III-like domain, and a catalytic domain. The N-terminal domain (59 amino acids) was similar to that found in the C-terminal extension of ChiA (50 amino acids) of this strain and furthermore showed significant sequence homology to the regions found in several chitinases and cellulases. Thus, to evaluate the role of the domain, we constructed the hybrid gene that directs the synthesis of the fusion protein with glutathione S-transferase activity. Both the fusion protein and the N-terminal domain itself bound to chitin, indicating that the N-terminal domain of ChiC constitutes an independent chitin-binding domain.  相似文献   

13.
Summary: The importance of molybdoenzymes is exemplified both by the debilitating and fatal human diseases caused by their deficiency and by their persistence throughout evolution. Here, we show that the protein fold of the molybdopyranopterin-containing domain of sulfite oxidase (the SUOX fold) can be found in all three domains of life. Analyses of sequence data and protein structure comparisons (secondary structure matching) show that the SUOX fold is found in enzymes that have quite distinct macromolecular architectures comprising one or more domains and sometimes subsidiary subunits. These are summarized as follows: (i) animal SUOXs that contain an N-terminal cytochrome b5 domain and an SUOX fold fused to a C-terminal dimerization domain; (ii) plant SUOX that contains an SUOX fold fused to a C-terminal dimerization domain; (iii) the YedY protein from Escherichia coli, which comprises only the SUOX fold; (iv) the sulfite dehydrogenase from Starkeya novella that contains the SUOX fold, a dimerization domain, and an additional c-type cytochrome subunit; and (v) the plant-type nitrate reductases, exemplified by that of Pichia angusta, that contain an N-terminal SUOX fold, a dimerization domain, a cytochrome b5 domain, and a C-terminal NADH binding flavin adenine dinucleotide-containing domain. We used the primary sequences of the proteins containing an SUOX fold to mine 559 sequences of related proteins. A phylogeny of a nonredundant subset of these sequences was generated, and the resultant clades were categorized by sequence motif analyses in the context of the available protein structures. Based on the motif analyses, cladistics, and domain conservations, we are able to postulate a plausible pathway of SUOX fold enzyme evolution.  相似文献   

14.
Spider silk has been extensively studied for its outstanding mechanical properties. Partial intermediate and C-terminal sequences of different spider silk proteins have been determined, and during the past decade also N-terminal domains have been characterized. However, only some of these N-terminal domains have been reported to contain signal peptides, leaving the mechanism whereby they enter the secretory pathway open to speculation. Here we present the sequence of a 394-residue N-terminal region of the Euprosthenops australis major ampullate spidroin 1 (MaSp1). A close comparison with published sequences from other species revealed the presence of N-terminal signal peptides followed by an approximately 130-residue nonrepetitive domain. From secondary structure predictions, helical wheel analysis, and circular dichroism spectroscopy this domain is concluded to contain five alpha-helices and is a conserved constituent of hitherto analyzed dragline, flagelliform, and cylindriform spider silk proteins.  相似文献   

15.
The metazoan mitochondrial DNA helicase is an integral part of the minimal mitochondrial replisome. It exhibits strong sequence homology with the bacteriophage T7 gene 4 protein primase-helicase (T7 gp4). Both proteins contain distinct N- and C-terminal domains separated by a flexible linker. The C-terminal domain catalyzes its characteristic DNA-dependent NTPase activity, and can unwind duplex DNA substrates independently of the N-terminal domain. Whereas the N-terminal domain in T7 gp4 contains a DNA primase activity, this function is lost in metazoan mtDNA helicase. Thus, although the functions of the C-terminal domain and the linker are partially understood, the role of the N-terminal region in the metazoan replicative mtDNA helicase remains elusive. Here, we show that the N-terminal domain of Drosophila melanogaster mtDNA helicase coordinates iron in a 2Fe-2S cluster that enhances protein stability in vitro. The N-terminal domain binds the cluster through conserved cysteine residues (Cys68, Cys71, Cys102, and Cys105) that are responsible for coordinating zinc in T7 gp4. Moreover, we show that the N-terminal domain binds both single- and double-stranded DNA oligomers, with an apparent Kd of ∼120 nm. These findings suggest a possible role for the N-terminal domain of metazoan mtDNA helicase in recruiting and binding DNA at the replication fork.  相似文献   

16.
Plasmodium falciparum harbors an essential relict plastid called the apicoplast that is involved in several important biosynthetic processes. Over 500 nuclear encoded proteins are imported into the organelle that is now recognized as an important therapeutic target. These proteins contain an N-terminal transit peptide sequence essential for apicoplast targeting during which the P. falciparum Hsp70-1 plays an important role. In the present study, we have focused on the in vitro interactions of PfHsp70-1 with synthetic peptides endowed with transit peptide like features. The peptides exhibit higher affinity for PfHsp70-1 in the presence of ADP compared to ATP. The results highlight the positional importance of selected residues in the designed peptides for affinity. They suggest that better peptide affinity for the protein requires a Lys at second position, retention of aromatic residue at the last position, and absence of acidic residues at any position in the transit peptides. Overall, the present work is the first in vitro fluorescence-based study of PfHsp70-1 with peptides possessing transit peptide-like features.  相似文献   

17.
Eukaryotic LIM domain proteins contain zinc finger forming motifs rich in cysteine and histidine that enable them to interact with other proteins. A cDNA clone isolated from an adult schistosome cDNA library revealed a sequence that coded for a novel class of proteins bearing 6 LIM domains and an N-terminal PET domain, SmLIMPETin. Phylogeny reconstruction of SmLIMPETin and comparison of its sequence to invertebrate homologues and to the vertebrate four-and-a-half LIM domains protein family (FHLs), uncovered a novel LIM domain protein family, the invertebrate LIM and PET domain protein family (LIMPETin). Northern blots, RT-PCR and Western blot showed that SmLIMPETin gene was less expressed in sexually mature adult females compared to sexually immature adult females and sexually mature and immature adult males, and not expressed in schistosomula.  相似文献   

18.
More than 50 Helicobacter pylori genes are predicted to encode outer membrane proteins (OMPs), but there has been relatively little experimental investigation of the H. pylori cell surface proteome. In this study, we used selective biotinylation to label proteins localized to the surface of H. pylori, along with differential detergent extraction procedures to isolate proteins localized to the outer membrane. Proteins that met multiple criteria for surface-exposed outer membrane localization included known adhesins, as well as Cag proteins required for activity of the cag type IV secretion system, putative lipoproteins, and other proteins not previously recognized as cell surface components. We identified sites of nontryptic cleavage consistent with signal sequence cleavage, as well as C-terminal motifs that may be important for protein localization. A subset of surface-exposed proteins were highly susceptible to proteolysis when intact bacteria were treated with proteinase K. Most Hop and Hom OMPs were susceptible to proteolysis, whereas Hor and Hof proteins were relatively resistant. Most of the protease-susceptible OMPs contain a large protease-susceptible extracellular domain exported beyond the outer membrane and a protease-resistant domain at the C terminus with a predicted β-barrel structure. These features suggest that, similar to the secretion of the VacA passenger domain, the N-terminal domains of protease-susceptible OMPs are exported through an autotransporter pathway. Collectively, these results provide new insights into the repertoire of surface-exposed H. pylori proteins that may mediate bacterium-host interactions, as well as the cell surface topology of these proteins.  相似文献   

19.
Chromatin-remodeling proteins have a pivotal role in normal cell function and development, catalyzing conformational changes in DNA that ultimately result in changes in gene expression patterns. Chromodomain helicase DNA-binding protein 4 (CHD4), the defining subunit of the nucleosome remodeling and deacetylase (NuRD) complex, is a nucleosome-remodeling protein of the SNF2/ISWI2 family, members of which contain two chromo domains and an ATP-dependent helicase module. CHD3, CHD4 and CHD5 also contain two contiguous PHD domains and have an extended N-terminal region that has not previously been characterized. We have identified a stable domain in the N-terminal region of CHD4 and report here the backbone and side chain resonance assignments for this domain at pH 7.5 and 25 °C (BMRB No. 18906).  相似文献   

20.
Smith MN  Kwok SC  Hodges RS  Wood JM 《Biochemistry》2007,46(11):3084-3095
Transporter ProP of Escherichia coli senses extracellular osmolality and responds by mediating cytoplasmic accumulation of organic solutes such as proline. Lesions at the proQ locus reduce ProP activity in vivo. ProQ was previously purified and characterized. Homology modeling predicted that ProQ possesses an alpha-helical N-terminal domain (residues 1-130) and a beta-sheet C-terminal domain (residues 181-232) connected by an unstructured linker. In this work, we tested the structural model for ProQ, explored the solubility and folding of full length ProQ and its domains in diverse buffers, and tested the impacts of the putative ProQ domains on ProP activity in vivo. Limited tryptic proteolysis of ProQ revealed protease resistant fragments corresponding to the predicted N-terminal and C-terminal domains. Polypeptides corresponding to the predicted N- and C-terminal domains could be overexpressed and purified to near homogeneity using nickel affinity, size exclusion and reversed phase chromatographies. Circular dichroism spectroscopy of the purified proteins revealed that the N-terminal domain was predominantly alpha-helical, whereas the C-terminal domain was predominantly beta-sheet, as predicted. The domains were soluble and folded in neutral buffers containing 0.6 M NaCl. The N-terminal domain was soluble and folded in 0.1 M MES (2-[N-morpholino]-ethane sulfonic acid) at pH 5.6. Despite high solubilities, the proteins were not well folded in Na citrate (0.1 M, pH 2.3). The ProQ domains and the linker were expressed at physiological levels, singly and in combination, in bacteria lacking the chromosomal proQ locus. Among these proteins, the N-terminal domain could partially complement the proQ deletion. The full length protein and a variant lacking only the linker restored full activity of the ProP protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号