首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rattlesnakes typically strike and release adult rodent prey. Striking is followed by a sustained, high rate of tongue flicking that guides the snake to the envenomated, dead prey. Wild-caught rattlesnakes exhibited this chemosensory searching for about 2.5 h, and the present study demonstrated that long-term captive rattlesnakes (Crotalus atrox, C durissus, C horridus, C vegrandis, C unicolor) at three zoos did the same. Because these zoo-raised snakes had always been offered dead rodents and because the snakes had become accustomed to ingesting them without striking, the present snakes had rarely exercised their innate predatory repertoires. The duration of chemosensory searching in these snakes indicates that this important aspect of the predatory repertoire had not been degraded as a consequence of long-term captive husbandry.  相似文献   

2.
Laughing falcon (Herpetotheres cachinnans) predation on coral snakes (Micrurus nigrocinctus) was recorded in two incidents that illustrate previously unreported variation in predatory behavior. In the first, the falcon held a live coral snake by the posterior end for an extended period of time, rather than decapitating it immediately. In the second, the falcon left a decapitated coral snake in a tree for more than 2 h before returning to recover its prey. A variety of behavioral adaptations may protect laughing falcons from coral snake venom.  相似文献   

3.
Once prey animals have detected predators, they must make decisions about how to respond based on a cost‐benefit analysis of their risk level. The threat sensitivity hypothesis predicts that prey animals match their response to the level of risk, with high‐risk predator encounters eliciting stronger evasive responses than low‐risk encounters. Primates are known prey of snakes, yet they vary their responses toward snakes. We predicted that primates match their response to the threat level from snakes by assessing posture, with striking postures indicating greater risk than coiled postures and coiled postures indicating greater risk than extended sinusoidal postures. We tested this prediction in a series of experimental trials in which captive rhesus macaques (Macaca mulatta) were exposed to snake models in those postures. Results supported the predictions: macaques responded more strongly to a snake model in a striking posture than in a coiled posture and more to a snake model in a coiled posture than to an extended sinusoidal snake model. We also examined responses of macaques to a partially exposed snake model to mimic the condition of incomplete information, as snakes are often occluded by vegetation. The occluded snake model evoked a response comparable to that of the striking snake. These findings support the threat sensitivity hypothesis. Rhesus macaques use the posture of snakes as a cue in threat assessment, responding more intensely as threat increases, and they also behave as if risk is elevated when their information about snakes is incomplete.  相似文献   

4.
A post-biting elevation in tongue-flicking rate was demonstrated experimentally in neonatal, ingestively naive garter snakes (Thamnophis radix). That the snakes also exhibited apparent searching movements suggests that strike-induced chemosensory searching occurs in nonvenomous snakes lacking previous experience with food or prey chemicals. Two litters of neonates differed in numbers of tongue-flicks emitted, but had similar relative magnitudes of response across experimental conditions. The existence of post-bite elevation in tongue-flick rate (and presumably strike-induced chemosensory searching) argues for a genetic basis for these chemosensory behaviors in a nonvenomous species of snake, extending the recent finding that strike-induced chemosensory searching is fully developed in ingestively naive neonatal rattlesnakes. Possible patterns of evolution of post-bite elevation in tongue-flick rate, and the strike-release-trail strategy of highly venomous snakes are discussed.  相似文献   

5.
Aggressive mimicry in vertebrates remains understudied relative to other categories of mimetic systems, such as Batesian mimicry. Prey attraction through caudal luring (CL) is a type of aggressive mimicry that constitutes a tripartite relationship in which a predator (mimic, S2), typically a snake, produces a highly specific tail display in the presence of a prey species (receiver or operator, R) to produce a resemblance to a prey animal (model, S1), such as a worm or insect, that the receiver mistakes for food and attempts to capture. Most reports of CL in snakes, however, are not hypothesis‐based and provide limited information on the cognitive interplay between predator and prey. In two experiments, CL was studied using a large sample (N = 40) of neonatal sidewinder rattlesnakes (Crotalus cerastes) and lizards (N = 12 species) to investigate stimulus control and visual perception. In experiment 1, CL was elicited in 110 trials using lizards that were either syntopic (N = 6 species) or nonsympatric (N = 6 species) to C. cerastes, and CL occurred at a significantly greater frequency when using syntopic taxa. Similarly, syntopic lizards were attracted to luring snakes significantly more than their nonsympatric counterparts. The presence of CL in C. cerastes was not ubiquitous and we provide preliminary evidence that this behaviour varies geographically and thus has a genetic basis. In experiment 2, a potential predator (live toad) was introduced to subjects that had been stimulated to lure by means of a prey‐dummy and, in all (N = 8) trials, there was an immediate shift in the behaviour of the snakes. The most notable changes were termination of CL and a transition to species‐typical defensive displays, which included rapid tail vibration and audible rattling in individuals with two (or more) rattle segments. We discuss future directions of CL research in snakes, especially with regard to expanding the types of cognitive tests. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 81–91.  相似文献   

6.
Prairie rattlesnakes (Crotalus viridis) typically release adult rodent prey after envenomation. The post-strike head orientation of the snake may facilitate location of the trail left by the rodent. To examine this possibility, mice were presented using a pair of tongs so that no chemical cues were deposited on any surfaces. Snakes exhibited a change in head orientation after predatory strikes, bringing them closer to the departure bearing of the prey. In addition, when trail searching began snakes contacted the departure bearing of the prey first rather than the entry bearing. When rodent trails are available, we expect this initial contact to bias the snake towards selecting the post-envenomation trail.  相似文献   

7.
The predator-prey relationship between California ground squirrels (Spermophilus beecheyi) and northern Pacific rattlesnakes (Crotalus riridis oreganus) is a useful system in which to explore risk assessment and management. Rattlesnakes are major predators of ground-squirrel pups, but pose only a sublethal threat to adult squirrels. Adults approach, harass, and even attack rattlesnakes when confronted with them. A rattlesnake's response to such harassment can include rattling and striking. Not all rattlesnakes pose the same risk to an adult squirrel. Larger, warmer rattlesnakes strike in ways that may be more effective at overwhelming the defensive leaps of squirrels, and larger snakes can inject more venom if they are successful in landing a bite. It would therefore benefit squirrels to assess and respond appropriately to rattlesnakes of different body size and temperature. We looked for cues in rattling upon which such assessments might be based. We recorded and digitally analyzed the rattling sounds of snakes of different sizes, each tested at four different body temperatures — 10, 18, 27, and 35°C. Results indicate that warmer snakes rattle with faster click rates, higher amplitudes, and shorter latencies. Similarly, larger snakes produce rattling sounds of higher amplitude and lower dominant frequencies. Thus, rattling provides reliable cues about rattlesnake dangerousness. Nevertheless, this highly ‘informative’ characteristic of rattling has its origins in physical and physiological constraints, not in specialization for communication. Ground squirrels appear to probe for the information extractable from rattling, for example by pushing loose substrate at the snake and thus inducing it to rattle. Future reports will discuss the degree to which ground squirrels actually exploit these cues.  相似文献   

8.
This paper presents systematically collected field data on what transpires between free-living rattlesnakes (Crotalus viridis oreganus) and individuals of an important prey species, California ground squirrels (Spermophilus beecheyi). In the course of two field seasons we discovered that rattlesnakes and California ground squirrels can engage in at least six different episode classes: snake watching, snake following, inspecting/probing coiled snakes, interaction, rattlesnake approaching squirrel and envenomation. If a rattlesnake is moving directly toward a squirrel and is within 3 m of its burrow an interaction may develop, but more commonly it does not. Instead of engaging the snake, the squirrels seemed to try to remain stationary in the face of the snake's advance, as if to minimize affording the snake information about the nursery burrow location. The rattlesnakes in turn behaved as though they were using the location of the squirrels that resisted moving away from their advance as the hub of a radial search pattern. We argue that if the squirrel engages the snake before it discovers the burrow, the location of the nursery burrow may be revealed and the pups' vulnerability actually increased.  相似文献   

9.
Although the toxic properties of snake venoms have been recognized throughout history, very little is known about the adaptive significance of these powerful mixtures. This study examined the popular hypothesis that prey envenomation enhances digestion by influencing the energetic costs of digestion and assimilation, gut passage time, and apparent assimilation efficiency (ASSIM) in western diamondback rattlesnakes (Crotalus atrox), a species whose venom is recognized for its comparatively high proteolytic activities. A complete randomized block design allowed repeated measures of specific dynamic action and gut passage time to be measured in eight snakes ingesting four feeding treatments (i.e., artificially envenomated live mice, artificially envenomated prekilled mice, saline injected live mice, and saline injected prekilled mice). A second experiment measured ASSIM in eight snakes ingesting a series of six artificially envenomated or six saline injected mice meals over an 8-week period. Contrary to expectations, the results of both these experiments revealed that envenomation had no significant influence on any of the measured digestive performance variables. Gut passage time averaged 6 days and ASSIM averaged 79.1%. Twenty-one hours following ingestion, postprandial metabolic rates exhibited factorial increases that averaged 3.9-fold greater than resting metabolic rate. Specific dynamic action lasted on average 88 hr and accounted for 26% of the total ingested energy. The results of this study reinforce the need to systematically examine the potential adaptive advantages that venoms confer on the snakes that produce them.  相似文献   

10.
Pitvipers (Crotalinae) and boid snakes (Boidae) possess highly sensitive infrared (IR) receptors. The ability of these snakes to image IR radiation allows the assessment of the direction and distance of an IR source (such as warm-blooded prey) in the absence of visual cues. The aim of this study was to determine the behavioural threshold of snakes to an IR stimulus. A moving IR source of constant size and temperature was presented to rattlesnakes (Crotalus atrox) at various distances (10–160 cm) from their snout. The snakes’ responses were quantified by measuring distinct behavioural changes during stimulus presentation (head jerks, head fixed, freezing, rattling and tongue-flicking). The results revealed that C. atrox can detect an artificial IR stimulus resembling a mouse in temperature and size up to a distance of 100 cm, which corresponds to a radiation density of 3.35 × 10−3 mW/cm2. These behavioural results reveal a 3.2 times higher sensitivity to IR radiation than earlier electrophysiological investigations.  相似文献   

11.
The feeding behavior and venom toxicity of the coral snake Micrurus nigrocinctus (Serpentes: Elapidae) on its natural prey in captivity were investigated. Coral snakes searched for their prey (the colubrid snake Geophis godmani) in the cages. Once their preys were located, coral snakes stroke them with a rapid forward movement, biting predominantly in the anterior region of the body. In order to assess the role of venom in prey restraint and ingestion, a group of coral snakes was 'milked' in order to drastically reduce the venom content in their glands. Significant differences were observed between snakes with venom, i.e., 'nonmilked' snakes, and 'milked' snakes regarding their behavior after the bite. The former remained hold to the prey until paralysis was achieved, whereas the latter, in the absence of paralysis, moved their head towards the head of the prey and bit the skull to achieve prey immobilization by mechanical means. There were no significant differences in the time of ingestion between these two groups of coral snakes. Susceptibility to the lethal effect of coral snake venom greatly differed in four colubrid species; G. godmani showed the highest susceptibility, followed by Geophis brachycephalus, whereas Ninia psephota and Ninia maculata were highly resistant to this venom. In addition, the blood serum of N. maculata, but not that of G. brachycephalus, prolonged the time of death of mice injected with 2 LD(50)s of M. nigrocinctus venom, when venom and blood serum were incubated before testing. Subcutaneous injection of coral snake venom in G. godmani induced neurotoxicity and myotoxicity, without causing hemorrhage and without affecting heart and lungs. It is concluded that (a) M. nigrocinctus venom plays a role in prey immobilization, (b) venom induces neurotoxic and myotoxic effects in colubrid snakes which comprise part of their natural prey, and (c) some colubrid snakes of the genus Ninia present a conspicuous resistance to the toxic action of M. nigrocinctus venom.  相似文献   

12.
In many animals, chemosensation acts as a first line of defence against snake predators. However, in spite of their obvious importance, the chemical nature of cues used by prey to detect snakes remains to be discovered. Here, we analyse which neutral lipids, extracted with n-hexane, are present in the skin of the European adder (Vipera berus) using Gas Chromatography – Mass Spectrometry. The analyses revealed that the washes held a complex cocktail of chemical compounds, with a total of 165 different molecules, mostly steroids (82% of the total ion current) and alkanes (13%), and smaller amounts of carboxylic acids, wax esters, ketones, amides and alcohols. Using bio-assays in which we confronted individuals of a prey species (the European common lizard, Zootoca vivipara) with these washes, we were able to confirm that the kairomones can be extracted using n-hexane. In fact, lizards did not respond to chemical cues still present in adder skin after washing, indicating that the kairomones are indeed strongly n-hexane soluble. Consequently, we have set a next step in deciphering the chemical nature of the predator-prey interaction between the European adder and the European common lizard. We hope our results facilitate further investigation into the chemical ecology of snakes and their prey.  相似文献   

13.
Three prairie rattlesnakes (Crotalus viridis viridis) and two gopher snakes (Pituophis melanoleucus sayi) from the eastern high plains of New Mexico (USA) were examined for parasites. One cestode (Oochoristica osheroffi), and two nematode (Kalicephalus inermis and Physoloptera retusa) species were recovered from two infected rattlesnakes. One female gopher snake was infected with two nematode (K. inermis and Rhabdias spp.) and one mite (Entonyssus halli) species.  相似文献   

14.
The complexity of natural environments is an important component of animal behavior, and laboratory environments often cannot reproduce that complexity. Strike‐induced chemosensory searching (SICS) is a robust phenomenon among venomous snakes that has been studied extensively in the laboratory. To date, observations of this behavior in the field have been limited largely to anecdotes; the extent to which post‐strike behaviors in the laboratory accurately reflect what occurs in nature has not been examined. In this study, I use time‐lapse video equipment in the field to record the predatory behavior of timber rattlesnakes (Crotalus horridus). This represents the first quantitative analysis of post‐strike predatory behaviors associated with natural feeding events. As in the laboratory, stereotyped post‐strike behaviors were only observed after successful strikes, and not after missed strikes. Snakes in the field were observed to proceed through the same basic behavioral stages that have been documented in the laboratory: striking prey, releasing prey immediately after strike, post‐strike immobility, location of the chemosensory trail, trail following, and prey swallowing. However, the duration of post‐strike immobility, trail location, and prey swallowing was substantially longer in field than in laboratory studies. Additionally, post‐strike immobility was significantly longer when snakes struck large prey (prey over 100 g) than when they struck small prey. Overall, these results indicate that the behavioral challenges associated with SICS may be more robust than laboratory studies have indicated.  相似文献   

15.
We present a striking case of phenotypic convergence within the speciose and taxonomically unstable Hydrophis group of viviparous sea snakes. Enhydrina schistosa, the ‘beaked sea snake’, is abundant in coastal and inshore habitats throughout the Asian and Australian regions, where it is responsible for the large majority of recorded deaths and injuries from sea snake bites. Analyses of five independent mitochondrial and nuclear loci for populations spanning Australia, Indonesia and Sri Lanka indicate that this ‘species’ actually consists of two distinct lineages in Asia and Australia that are not closest relatives. As a result, Australian “E. schistosa” are elevated to species status and provisionally referred to Enhydrina zweifeli. Convergence in the characteristic ‘beaked’ morphology of these species is probably associated with the wide gape required to accommodate their spiny prey. Our findings have important implications for snake bite management in light of the medical importance of beaked sea snakes and the fact that the only sea snake anti-venom available is raised against Malaysian E. schistosa.  相似文献   

16.
Between September 1997 and March 1998, a severe skin, eye, and mouth disease was observed in a population of dusky pigmy rattlesnakes (Sistrurus miliarius barbouri), at the Lake Woodruff National Wildlife Refuge in Volusia County, Florida (USA). Three affected pigmy rattlesnakes were submitted for necropsy. All snakes had severe necrotizing and predominantly granulomatous dermatitis, stomatitis, and ophthalmitis, with involvement of the subadjacent musculature and other soft tissues. Numerous fungal hyphae were seen throughout tissue sections stained with periodic acid Schiff and Gomori's methenamine silver. Samples of lesions were cultured for bacteria and fungi. Based on hyphae and spore characteristics, four species of fungi were identified from culture: Sporothrix schenckii, Pestalotia pezizoides, Geotrichum candidum (Galactomyces geotrichum), and Paecilomyces sp. While no additional severely affected pigmy rattlesnakes were seen at the study site, a garter snake (Thamnophis sirtalis) and a ribbon snake (Thamnophis sauritis) with similar lesions were found. In 1998 and 1999, 42 pigmy rattlesnakes with multifocal minimal to moderate subcutaneous masses were seen at the study site. Masses from six of these snakes were biopsied in the field. Hyphae morphologically similar to those seen in the severe cases were observed with fungal stains. Analysis of a database representing 10,727 captures in previous years was performed after the 1998 outbreak was recognized. From this analysis we determined that 59 snakes with clinical signs similar to those seen during the 1998 outbreak were documented between 1992 and 1997. This study represents the first documented report of a mycotic disease of free-ranging snakes.  相似文献   

17.
Derived large-mouthed snakes (macrostomatans) possess numerous specializations in their skull and lower jaws that allow them to consume large vertebrate prey. In contrast, basal snakes lack these adaptations and feed primarily on small prey items. The sequence of osteological and behavioral modifications involved in the evolution of the macrostomatan condition has remained an open question because of disagreement about the origin and interrelationships of snakes, the paucity of well-preserved early snake fossils on many continental landmasses, and the lack of information about the feeding ecology of early snakes. We report on a partial skeleton of a new 3.5-m-long snake, Sanajeh indicus gen. et sp. nov., recovered from Upper Cretaceous rocks of western India. S. indicus was fossilized in association with a sauropod dinosaur egg clutch, coiled around an egg and adjacent to the remains of a ca. 0.5-m-long hatchling. Multiple snake-egg associations at the site strongly suggest that S. indicus frequented nesting grounds and preyed on hatchling sauropods. We interpret this pattern as “ethofossil” preservation of feeding behavior. S. indicus lacks specializations of modern egg-eaters and of macrostomatans, and skull and vertebral synapomorphies place it in an intermediate position in snake phylogeny. Sanajeh and its large-bodied madtsoiid sister taxa Yurlunggur camfieldensis and Wonambi naracoortensis from the Neogene of Australia show specializations for intraoral prey transport but lack the adaptations for wide gape that characterize living macrostomatan snakes. The Dholi Dungri fossils are the second definitive association between sauropod eggs and embryonic or hatchling remains. New fossils from western India provide direct evidence of feeding ecology in a Mesozoic snake and demonstrate predation risks for hatchling sauropod dinosaurs. Our results suggest that large body size and jaw mobility afforded some non-macrostomatan snakes a greater diversity of prey items than previously suspected on the basis of extant basal snakes.  相似文献   

18.
Greenbaum  Eli 《Behavioral ecology》2004,15(2):345-350
Viperid snakes strike, envenomate, and release mammalian preyto prevent being harmed by the prey; snakes must then trackprey in the process of strike-induced chemosensory searching.Because rattlesnakes prefer to track and consume envenomatedprey, it would seem that the scent of envenomated tissue iskey to the tracking process. After striking rodents, rattlesnakesalso retain a specific chemical search image of prey items.I examined this behavioral pattern in copperheads (Agkistrodoncontortrix) from three US populations with documented dietarybiases toward mammals (Kansas), lepidopteran larvae (Texas),and amphibians (Louisiana), respectively. Experiments were conductedto assess whether copperheads form a specific search image ofnon-envenomated mouse, hornworm, and frog prey items. Additionalexperiments tested the relative importance of envenomated tissueto prey scent. Results indicate that copperheads do not forma specific search image of prey items. Preference for non-envenomatedprey items is in the order mouse > hornworm > frog forall three populations; therefore, the innate behavioral preferencefor types of prey does not match the dietary biases noted inthe literature. Envenomated mice and hornworms were preferredto all nonenvenomated prey items, but most trials involvingenvenomated frogs did not suggest envenomated prey preference.Overall, these results suggest that when the snakes search forprey, envenomated tissue stimuli are more important to snakesthan scents arising from the prey itself. Searching and consumptionbehaviors seem to be independent, suggesting that strike-inducedchemosensory searching and consumption are more complicatedbehavioral processes than previously recognized.  相似文献   

19.
A long-standing question in evolutionary studies of snake venoms is the extent to which phylogenetic divergence and diet can account for between-species differences in venom composition. Here we apply phylogeny-based comparative methods to address this question. We use data on venom variation generated using proteomic techniques for all members of a small clade of rattlesnakes (Sistrurus sp.) and two outgroups for which phylogenetic and diet information is available. We first complete the characterization of venom variation for all members of this clade with a “venomic” analysis of pooled venoms from two members of this genus, S. milarius streckeri and S. m. milarius. These venoms exhibit the same general classes of proteins as those found in other Sistrurus species but differ in their relative abundances of specific protein families. We then test whether there is significant phylogenetic signal in the relative abundances of major venom proteins across species and if diet (measured as percent mammals and lizards among all prey consumed) covaries with venom composition after phylogenetic divergence is accounted for. We found no evidence for significant phylogenetic signal in venom variation: K values for seven snake venom proteins and two composite venom variables [PC 1 and 2]) were all nonsignificant and lower (mean = 0.11+0.06 sd) than mean K values (>0.35) previously reported for a wide range of morphological, life history, physiological and behavioral traits from other species. Finally, analyses based on Phylogenetic Generalized Least Squares (PGLS) methods reveal that variation in abundance of some venom proteins, most strongly CRISP is significantly related to snake diet. Our results demonstrate that venom variation in these snakes is evolutionarily a highly labile trait even among very closely-related taxa and that natural selection acting through diet variation may play a role in molding the relative abundance of specific venom proteins.  相似文献   

20.

Background

Speckled rattlesnakes (Crotalus mitchellii) inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size) evolving in response to shifts in prey size.

Methodology/Principal Findings

Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Ángel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC) showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively.

Conclusions/Significance

Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in community dynamics that are related to graded differences in area over what are otherwise similar bioclimatic conditions. We hypothesize that in this system shifts to larger prey, episodic saturation and depression of primary prey density, and predator release may have led to insular gigantism, and that shifts to smaller prey and increased reproductive efficiency in the presence of intense intraspecific competition may have led to insular dwarfism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号