共查询到20条相似文献,搜索用时 15 毫秒
1.
Neil M. Loader Elizabeth M. Woolner Amanda Hellyer Antoni R. Slabas Richard Safford 《Plant molecular biology》1993,23(4):769-778
Acyl-ACP thioesterases are involved in regulating chain termination of fatty acid biosynthesis in plant systems. Previously, acyl-ACP thioesterase purified from Brassica napus seed tissue has been shown to have a high preference for hydrolysing oleoyl-ACP. Here, oligonucleotides derived from B. napus oleoyl-ACP thioesterase protein sequence data have been used to isolate two acyl-ACP thioesterase clones from a B. napus embryo cDNA library. The two clones, pNL2 and pNL3, contain 1642 bp and 1523 bp respectively and differ in the length of their 3 non-coding regions. Both cDNAs contain open reading frames of 366 amino acids which encode for 42 kDa polypeptides. Mature rape thioesterase has an apparent molecular weight of 38 kDa on SDS-PAGE and these cDNAs therefore encode for precursor forms of the enzyme. This latter finding is consistent with the expected plastidial location of fatty acid synthase enzymes. Northern blot analysis shows thioesterase mRNA size to be ca. 1.6 kb and for the thioesterase genes to be highly expressed in seed tissue coincident with the most active phase of storage lipid synthesis. There is some sequence heterogeneity between the two cDNA clones, but overall they are highly homologous sharing 95.7% identity at the DNA level and 98.4% identity at the amino acid level. Some sequence heterogeneity was also observed between the deduced and directly determined thioesterase protein sequences. Consistent with the observed sequence heterogeneity was Southern blot data showing B. napus thioesterase to be encoded by a small multi-gene family. 相似文献
2.
3.
The objective of this study was to evaluate pollen dispersal inBrassica napus (oilseed rape). The selectable marker, used to follow pollen movement, was a dominant transgene (bar) conferring resistance to the herbicide glufosinate-ammonium. Transgenic and non-transgenic plants of the cultivar Westar were planted in a 1.1 ha field trial, with the transgenic plants in a 9 m diameter circle at the centre, surrounded by non-transgenic plants to a distance of at least 47 m in all directions. A 1 m circle of non-transgenic plants was sown in the centre of the transgenic area to allow estimation of the level of pollen dispersal when plants were in close contact. Honeybee hives were placed at the trial site to optimize the opportunity for cross-pollination. During the flowering period, regular observations were made of the number of plants flowering and the number and type of insects present in 60 1 m2 areas. These areas were located uniformly around the plot at distances of 1, 3, 6, 12, 24, 36 and 47 m from the edge of the 9 m circle of transgenic plants. Seed samples were harvested from each of the 7 distances so that approximately 20% of the circumference of the plot was sampled at each distance. The centre non-transgenic circle was also sampled. Plants were grown from the seed samples and sprayed with glufosinate to estimate the frequency of pollen dispersal at each distance. In order to screen enough samples to detect low frequency cross-pollination events, seed samples were tested in the greenhouse and on a larger scale in the field. Results were confirmed by testing progeny for glufosinate resistance and by Southern blot analysis. The estimated percentage of pollen dispersal in the non-transgenic centre circle was 4.8%. The frequency was estimated to be 1.5% at a distance of 1 m and 0.4% at 3 m. The frequency decreased sharply to 0.02% at 12 m and was only 0.00033% at 47 m. No obvious directional effects were detected that could be ascribed to wind or insect activity. 相似文献
4.
Effects of an antisense napin gene on seed storage compounds in transgenic Brassica napus seeds 总被引:4,自引:0,他引:4
Junko Kohno-Murase Makoto Murase Hiroaki Ichikawa Jun Imamura 《Plant molecular biology》1994,26(4):1115-1124
To manipulate the quantity and quality of storage components in Brassica napus seeds, we have constructed an antisense gene for the storage protein napin. The antisense gene was driven by the 5-flanking region of the B. napus napin gene to express antisense RNA in a seed-specific manner. Seeds of transgenic plants with antisense genes often contained reduced amounts of napin. In some transgenic plants, no accumulation of napin was observed. However, the total protein content of transgenic and wild-type seeds did not differ significantly. Seeds lacking napin accumulated 1.4 to 1.5 times more cruciferin than untransformed seeds, although the oleosin content was not affected. Fatty acid content and composition in the seeds of transgenic plants were also analyzed by gas chromatography. Though the total fatty acid content of the transformants was the same as that of non-transformants, there was a reduction in 18:1 contents and a concomitant increase of 18:2 in seeds with reduced napin levels. This observed change in fatty acid composition was inherited in the next generation. 相似文献
5.
S. Pleines W. Friedt 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,78(6):793-797
Summary Results from a diallel mating of two rapeseed lines with distinctly different linolenic acid concentration show that this trait is mainly under control of nuclear genes of the embryo. However, significant differences in reciprocal F1, BC1 and BC2 indicate maternal control, which is realized by interaction between maternal genotype and nuclear genes of the embryo. Additionally, temperature exerts considerable influence on the degree of maternal control. Since no reciprocal differences are detectable in F2, cytoplasmic factors seem not to be involved in the inheritance of linolenic acid concentration. Hypotheses on the physiological nature of maternal control of this trait are discussed. 相似文献
6.
Acyl-(acyl-carrier-protein) hydrolase (EC 3.1.2.14) releases fatty acids from the end-product of fatty acid synthesis in plastids for the subsequent synthesis of glycerolipids in the cytoplasm. Isoelectric focusing of chloroplast stroma proteins from squash cotyledons suggested that there were at least three isomeric forms of acyl-(acyl-carrier-protein) hydrolase having pI values of 4.5, 5.3 and 7.8. The pI 4.5 and pI 5.3 forms showed maximum activity at pH 9.8 whereas the activity of the pI 7.8 form increased within the range 6.2 to 10.2 but no optimum was seen. The pI 4.5 form was purified 100 000-fold from squash cotyledons. The highly purified fraction contained two polypeptides, whose molecular masses were estimated to be 35 kDa and 33 kDa by SDS-PAGE. It is suggested that the 33 kDa polypeptide was a degradation product of the 35kDa polypeptide. Oleoyl-(acyl-carrier protein) was the preferred substrate of this enzyme over palmitoyl- and stearoyl-(acyl-carrier protein), whereas lauroyl-(acyl-carrier protein) was nearly inactive. These results indicate the enzyme is specific for long-chain acyl-(acyl-carrier protein). 相似文献
7.
Before novel transgenic plant genotypes are grown outside containment facilities and evaluated under field conditions, it is necessary to complete a risk assessment to consider the possible consequences of that release. An important aspect of risk assessment is to consider the likelihood and consequences of the transgene being transferred by cross-pollination to related species, including other crops, weeds and ruderal populations. The purpose of this report is to review the literature to assess the ease with whichBrassica napus can hybridize with related species. The evidence for hybridization is considered at three levels: a) by open pollination, b) by hand pollination and c) by the use ofin vitro ovule and embryo rescue techniques; and also examines the fertility and vigour of the F1, F2 and backcross generations. Four species are reported to hybridize withB. napus by open pollination:B. rapa andB. juncea using fully fertile parents; andB. adpressa andR. raphanistrum using a male-sterileB. napus parent. Seventeen species are reported to form hybrids (including the four species above) withB. napus when pollination is carried out manually. At least 12 of these species were unable to form F2 progeny, and eight were unable to produce progeny when the F1 was backcrossed to one of the parental species. Many factors will influence the success of hybridization under field conditions, including: distance between the parents, synchrony of flowering, method of pollen spread, specific parental genotypes used, direction of the cross and the environmental conditions. Even where there is a possibility of hybridization betweenB. napus and a related species growing in the vicinity of a release, poor vigour and high sterility in the hybrids will generally mean that hybrids and their progeny will not survive in either an agricultural or natural habitat. 相似文献
8.
Hasan M Friedt W Pons-Kühnemann J Freitag NM Link K Snowdon RJ 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2008,116(8):1035-1049
Breeding of oilseed rape (Brassica napus ssp. napus) has evoked a strong bottleneck selection towards double-low (00) seed quality with zero erucic acid and low seed glucosinolate
content. The resulting reduction of genetic variability in elite 00-quality oilseed rape is particularly relevant with regard
to the development of genetically diverse heterotic pools for hybrid breeding. In contrast, B. napus genotypes containing high levels of erucic acid and seed glucosinolates (++ quality) represent a comparatively genetically
divergent source of germplasm. Seed glucosinolate content is a complex quantitative trait, however, meaning that the introgression
of novel germplasm from this gene pool requires recurrent backcrossing to avoid linkage drag for high glucosinolate content.
Molecular markers for key low-glucosinolate alleles could potentially improve the selection process. The aim of this study
was to identify potentially gene-linked markers for important seed glucosinolate loci via structure-based allele-trait association
studies in genetically diverse B. napus genotypes. The analyses included a set of new simple-sequence repeat (SSR) markers whose orthologs in Arabidopsis thaliana are physically closely linked to promising candidate genes for glucosinolate biosynthesis. We found evidence that four genes
involved in the biosynthesis of indole, aliphatic and aromatic glucosinolates might be associated with known quantitative
trait loci for total seed glucosinolate content in B. napus. Markers linked to homoeologous loci of these genes in the paleopolyploid B. napus genome were found to be associated with a significant effect on the seed glucosinolate content. This example shows the potential
of Arabidopsis-Brassica comparative genome analysis for synteny-based identification of gene-linked SSR markers that can potentially be used in marker-assisted
selection for an important trait in oilseed rape.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
9.
D. Toroser C. E. Thormann T. C. Osborn R. Mithen 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,91(5):802-808
We report the RFLP mapping of quantitative trait loci (QTLs) which regulate the total seed aliphaticglucosinolate content in Brassica napus L. A population of 99 F1-derived doubled-haploid (DH) recombinant lines from a cross between the cultivars Stellar (low-glucosinolate) and Major (high-glucosinolate) was used for singlemarker analysis and the interval mapping of QTLs associated with total seed glucosinolates. Two major loci, GSL-1 and GSL-2, with the largest influence on total seed aliphatic-glucosinolates, were mapped onto LG 20 and LG 1, respectively. Three loci with smaller effects, GSL-3, GSL-4 and GSL-5, were tentatively mapped to LG 18, LG 4 and LG 13, respectively. The QTLs acted in an additive manner and accounted for 71 % of the variation in total seed glucosinolates, with GSL-1 and GSL-2 accounting for 33% and 17%, respectively. The recombinant population had aliphatic-glucosinolate levels of between 6 and 160 moles per g-1 dry wt of seed. Transgressive segregation for high seed glucosinolate content was apparent in 25 individuals. These phenotypes possessed Stellar alleles at GSL-3 and Major alleles at the four other GSL loci demonstrating that low-glucosinolate genotypes (i.e. Stellar) may possess alleles for high glucosinolates which are only expressed in particular genetic backgrounds. Gsl-elong and Gsl-alk, loci which regulate the ratio of individual aliphatic glucosinolates, were also mapped. Gsl-elong-1 and Gsl-elong-2, which control elongation of the -amino-acid precursors, mapped to LG 18 and LG 20 and were coincident with GSL loci which regulate total seed aliphatic glucosinolates. A third tentative QTL, which regulates side-chain elongation, was tentatively mapped to LG 12. Gsl-alk, which regulates H3CS-removal and side-chain de-saturation, mapped to LG 20. 相似文献
10.
Genetic manipulation in cultivars of oilseed rape (Brassica napus) using Agrobacterium 总被引:1,自引:0,他引:1
G. Ooms A. Bains M. Burrell A. Karp D. Twell E. Wilcox 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1985,71(2):325-329
Summary The response of oilseed rape cultivars to infection with Agrobacterium tumefaciens and A. rhizogenes and the possibility of regenerating genetically transformed oilseed rape plants were examined. The frequency at which Agrobacterium induced galls or hairy-roots on in vitro cultured plants ranged from 10% to 70%, depending on the cultivar. From galls induced by the tumorigenic strain T37, known to be strongly shoot inducing on tobacco, roots developed frequently. Occasionally, shoots formed and some of these produced tumour cell specific nopaline. Attempts to grow the transformed shoots into plants have so far been unsuccessful. Whole plants transformed with Ri-T-DNA, however, were regenerated. These had crinkled leaves and abundant, frequently branching roots that showed reduced geotropism, similar to previously isolated Ri T-DNA transformed tobacco and potato plants. The transformed oilseed rape plants flowered, but failed to form seeds. 相似文献
11.
Przemyslaw Lehmann Carol E. Jenner Edward Kozubek Andrew J. Greenland John A. Walsh 《Molecular breeding : new strategies in plant improvement》2003,11(2):83-94
Oilseed rape (Brassica napus) lines transformedwith the coat protein (CP) gene of Turnip mosaic virus(TuMV) were used to determine the effectiveness of resistance to TuMV mediatedby CP RNA or coat protein. Lines with one, two, or more copies of transgeneswere produced. T2 and T3 lines containing the CP genewitha functional start codon synthesised coat protein and showed high, but variablelevels of resistance to TuMV (21–96% resistant plants per line). TheT1 and T2 progeny of all lines carrying the CP gene withamutated start codon so that RNA but not protein was expressed, were assusceptible to TuMV as controls. Thus, in these experiments we were able toinduce CP-mediated resistance, but not RNA-mediated resistance. 相似文献
12.
Uniconazole at various concentrations on rape, at the three-leaf stage, was examined for physiologic and yield effects. Foliar sprays of 10, 25, and 50 mg/liter significantly reduced seedling height, and increased shoot width (stem width before elongation), number of green leaves, and total dry weight at transplanting. Chlorophyll content, superoxide dismutase and catalase activities, root oxidizability (capacity for root oxidation), and ethylene production were also increased. Additionally, the number of branches and pods/plant were increased; and a 7.4, 8.5, and 4.3% increase of seed yield over the controls was observed with treatments at 10, 25, and 50 mg/liter uniconazole, respectively. No significant effects were observed on plant maturity, the seed oil content, or the erucic acid and glucosinolate content. Total oil production significantly increased with 10, 25, and 50 mg/liter by 9.9, 10.6, and 6.8%, respectively, over the controls. These results suggested that uniconazole-induced high productivity was accompanied by increased levels of activities of various antioxidants, including superoxide dismutase and catalase, and by the improvement of root oxidizability and plant vigor.Abbreviations SOD superoxide dismutase - CAT catalase - NBT nitro blue tetrazolium - TTC red tetrazolium - IAA indoleacetic acid 相似文献
13.
Ira I. G. S. Verwoert Karin H. van der Linden Michael C. Walsh H. John J. Nijkamp Antoine R. Stuitje 《Plant molecular biology》1995,27(5):875-886
The Escherichia coli fabH gene encoding 3-ketoacyl-acyl carrier protein synthase III (KAS III) was isolated and the effect of overproduction of bacterial KAS III was compared in both E. coli and Brassica napus. The change in fatty acid profile of E. coli was essentially the same as that reported by Tsay et al. (J Biol Chem 267 (1992) 6807–6814), namely higher C14:0 and lower C18:1 levels. In our study, however, an arrest of cell growth was also observed. This and other evidence suggests that in E. coli the accumulation of C14:0 may not be a direct effect of the KAS III overexpression, but a general metabolic consequence of the arrest of cell division. Bacterial KAS III was expressed in a seed- and developmentally specific manner in B. napus in either cytoplasm or plastid. Significant increases in KAS III activities were observed in both these transformation groups, up to 3.7 times the endogenous KAS III activity in mature seeds. Only the expression of the plastid-targeted KAS III gene, however, affected the fatty acid profile of the storage lipids, such that decreased amounts of C18:1 and increased amounts of C18:2 and C18:3 were observed as compared to control plants. Such changes in fatty acid composition reflect changes in the regulation and control of fatty acid biosynthesis. We propose that fatty acid biosynthesis is not controlled by one rate-limiting enzyme, such as acetyl-CoA carboxylase, but rather is shared by a number of component enzymes of the fatty acid biosynthetic machinery. 相似文献
14.
Santosh K. Ghosh Ashish Bhattacharjee Jyoti K. Jha Ashis K. Mondal Mrinal K. Maiti Asitava Basu Dolly Ghosh Sudhamoy Ghosh Soumitra K. Sen 《Plant Physiology and Biochemistry》2007,45(12):887-897
Deposition of oleate, stearate and palmitate at the later stages of seed development in Mahua (Madhuca longifolia (latifolia)), a tropical non-conventional oil seed plant, has been found to be the characteristic feature of the regulatory mechanism that produces the saturated fatty acid rich Mahua seed fat (commonly known as Mowrah fat). Although, the content of palmitate has been observed to be higher than that of stearate at the initial stages of seed development, it goes down when the stearate and oleate contents consistently rise till maturity. The present study was undertaken in order to identify the kind of acyl-ACP thioesterase(s) that drives the characteristic composition of signature fatty acids (oleate 37%, palmitate 25%, stearate 23%, linoleate 12.5%) in its seed oil at maturity. The relative Fat activities in the crude protein extracts of the matured seeds towards three thioester substrates (oleoyl-, stearoyl- and palmitoyl-ACP) have been found to be present in the following respective ratio 100:31:8. Upon further purification of the crude extract, the search revealed the presence of two partially purified thioesterases: a long-chain oleoyl preferring house-keeping LC-Fat and a novel stearoyl-oleoyl preferring SO-Fat. The characteristic accumulation of oleate and linoleate in the M. latifolia seed fat is believed to be primarily due to the thioesterase activity of the LC-Fat or MlFatA. On the other hand, the SO-Fat showed almost equal substrate specificity towards stearoyl- and oleoyl-ACP, when its activity towards palmitoyl-ACP compared to stearoyl-ACP was only about 12%. An RT-PCR based technique for cloning of a DNA fragment from the mRNA pool of the developing seed followed by nucleotide sequencing resulted in the identification of a FatB type of thioesterase gene (MlFatB). This gene was found to exist as a single copy in the mother plant genome. Ectopic expression of this MlFatB gene product in E. coli strain fadD88 further proved that it induced a higher level of accumulation of both stearic and oleic acids when compared to the negative control line that did not contain this MlFatB gene. It also indicated that SO-Fat indeed is the product of the MlFatB gene present in the maturing seeds of M. latifolia in nature. Additionally, a predicted 3D-structure for MlFatB protein has been developed through use of bioinformatics tools. 相似文献
15.
L. H. Gammelvind J. K. Schjoerring V. O. Mogensen C. R. Jensen J. G. H. Bock 《Plant and Soil》1996,186(2):227-236
The rate of photosynthesis and its relation to tissue nitrogen content was studied in leaves and siliques of winter oilseed
rape (Brassica napus L.) growing under field conditions including three rates of nitrogen application (0, 100 or 200 kg N ha-1) and two levels of irrigation (rainfed or irrigated at a deficit of 20 mm).
The predominant effect of increasing N application under conditions without water deficiency was enhanced expansion of photosynthetically
active leaf and silique surfaces, while the rate of photosynthesis per unit leaf or silique surface area was similar in the
different N treatments. Thus, oilseed rape did not increase N investment in leaf area expansion before a decline in photosynthetic
rate per unit leaf area due to N deficiency could be avoided. Much less photosynthetically active radiation penetrated into
high-N canopies than into low-N canopies. The specific leaf area increased markedly in low light conditions, causing leaves
in shade to be less dense than leaves exposed to ample light.
In both leaves and siliques the photosynthetic rate per unit surface area responded linearly to increasing N content up to
about 2 g m-2, thus showing a constant rate of net CO2 assimilation per unit increment in N (constant photosynthetic N use efficiency). At higher tissue N contents, photosynthetic
rate responded less to changes in N status. Expressed per unit N, light saturated photosynthetic rate was three times higher
in leaves than in silique valves, indicating a more efficient photosynthetic N utilization in leaves than in siliques. Nevertheless,
from about two weeks after completion of flowering and onwards total net CO2 fixation in silique valves exceeded that in leaves because siliques received much higher radiation intensities than leaves
and because the leaf area declined rapidly during the reproductive phase of growth.
Water deficiency in late vegetative and early reproductive growth stages reduced the photosynthetic rate in leaves and, in
particular, siliques of medium- and high-N plants, but not of low-N plants. 相似文献
16.
Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. 总被引:6,自引:0,他引:6
C. E. Thormann J. Romero J. Mantet T. C. Osborn 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,93(1-2):282-286
The quality of plant oil is determined by its component fatty acids. Relatively high levels of linolenic acid reduce the oxidative stability of the oil, and high levels of erucic acid in the diet have been associated with health problems. Thus, oilseed Brassica napus cultivars with low linolenic and low erucic acid contents are highly desirable for edible oil production. In order to identify genes controlling the levels of erucic and linolenic acids, we analyzed the oil composition of 99 F1-derived doubled haploid lines from a cross between cv Major (high levels of erucic and linolenic acids) and cv Stellar (low levels of both fatty acids). A molecular marker linkage map of 199 loci for this population was used to identify quantitative trait loci (QTL) controlling oil composition. We identified two regions that accounted for nearly all of the phenotypic variation in erucic acid concentration and one region that accounted for 47% of the variation in linolenic acid concentration. The QTL associated with linolenic acid concentration mapped near a RFLP locus detected by a cDNA clone encoding an omega-3 desaturase, suggesting that the low linolenic acid content of Stellar may be due to a mutation in this gene. 相似文献
17.
Martin M. Kater Gregory M. Koningstein H. John J. Nijkamp Antoine R. Stuitje 《Plant molecular biology》1991,17(4):895-909
The onset of storage lipid biosynthesis during seed development in the oilseed crop Brassica napus (rape seed) coincides with a drastic qualitative and quantitative change in fatty acid composition. During this phase of storage lipid biosynthesis, the enzyme activities of the individual components of the fatty acid synthase system increase rapidly. We describe a rapid and simple purification procedure for the plastidlocalized NADH-dependent enoyl-acyl carrier protein reductase from developing B. napus seed, based on its affinity towards the acyl carrier protein (ACP). The purified protein was N-terminally sequenced and used to raise a potent antibody preparation. Immuno-screening of a seed-specific gt11 cDNA expression library resulted in the isolation of enoyl-ACP reductase cDNA clones. DNA sequence analysis of an apparently full-length cDNA clone revealed that the enoyl-ACP reductase mRNA is translated into a precursor protein with a putative 73 amino acid leader sequence which is removed during the translocation of the protein through the plastid membrane. Expression studies in Escherichia coli demonstrated that the full-length cDNA clone encodes the authentic B. napus NADH-dependent enoyl-ACP reductase. Characterization of the enoyl-ACP reductase genes by Southern blotting shows that the allo-tetraploid B. napus contains two pairs of related enoyl-ACP reductase genes derived from the two distinct genes found in both its ancestors, Brassica oleracea and B. campestris. Northern blot analysis of enoyl-ACP reductase mRNA steady-state levels during seed development suggests that the increase in enzyme activity during the phase of storage lipid accumulation is regulated at the level of gene expression. 相似文献
18.
M. Karim Zarhloul Christof Stoll Wilfried Lühs Alexandra Syring-Ehemann Ludger Hausmann Reinhard Töpfer Wolfgang Friedt 《Molecular breeding : new strategies in plant improvement》2006,18(3):241-251
Seed lipids of oilseed rape (Brassica napus) usually contain small proportions (<3%) of stearic acid. The objective of this study was to increase the content of stearic fatty␣acid in rapeseed oil. An antisense down-regulation of the endogenous stearoyl-ACP desaturase (SAD) catalysing the reaction step from stearic to oleic acid in two different genetic backgrounds was studied. The result of down-regulation of the SAD yielded an about 10-fold increase of stearic acid from 3.7% up to 32% in single seeds of transgenic low-erucic acid rapeseed (LEAR), while high-erucic acid rapeseed (HEAR) showed a 4-fold increase of C18:0 from 1% up to 4%. It could be shown in pooled T2 seed material of LEAR rapeseed, that the stearic acid content is highly correlated with the down-regulation of SAD as indicated by the␣stearate desaturation proportion (SDP). The importance of the promoter strength for the alteration of a trait was confirmed in this study as no change in the fatty acid composition of transgenic plants was achieved with gene constructs controlled by the weak FatB4 seed-specific promoter from Cuphea lanceolata.Karim Zarhloul and Christof Stoll have contributed in
equal parts to the present work 相似文献
19.
James S. Keddie Eira-Wyn Edwards Terry Gibbons Charles H. Shaw Denis J. Murphy 《Plant molecular biology》1992,19(6):1079-1083
Antibodies raised against purified rapeseed 19 kDa oleosin protein were used to screen an embryo-derived gt11 expression library from Brassica napus. A near full-length cDNA clone, BnV, was isolated. The 781 bp cDNA contained an open reading frame of 549 bp followed by an untranslated region of 222 pb and a poly(A) region of 10 bp. Comparisons between this cDNA and a different oleosin cDNA previously isolated from the same library showed high degrees of sequence similarity in the central domain region and in the 3 untranslated region. Sequence similarities between the derived protein sequence of this cDNA and all other known oleosin protein sequences are discussed. 相似文献
20.
James E. Cresswell 《Transgenic research》1994,3(2):134-137
Genetically modified plants containing selectable markers offer a unique opportunity for pollination biologists to investigate some of the major, but intractable questions about paternity distributions and their causes. Here, a method is reported that uses transgenic plants to enable the quantification of the outcrossed fertilizations that result from a single pollinator visit. Gene flow mediated by worker bumblebees (Bombus terrestris) was studied among plants of oilseed rape (Brassica napus L. cv. Westar) where transgenic paternity in seeds of a non-transgenic plant was manifested as herbicide resistance. Overall, 91% of the resistant seeds resulted from the first four flowers that were visited after the bumblebee left the transgenic plant, and none was found beyond the 14th successively visited flower. The possibilities for developing the method to address various questions in pollination biology are discussed. 相似文献