共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipoxygenase gene expression is modulated in plants by water deficit, wounding, and methyl jasmonate 总被引:23,自引:0,他引:23
Summary Two classes of lipoxygenase (LOX) cDNAs, designated loxA and loxB, were isolated from soybean. A third lipoxygenase cDNA, loxP1, was isolated from pea. The deduced amino acid sequences of loxA and loxB show 61–74% identity with those of soybean seed LOXs. loxA and loxB mRNAs are abundant in roots and non-growing regions of seedling hypocotyls. Lower levels of these mRNAs are found in hypocotyl growing regions. Exposure of soybean seedlings to water deficit causes a rapid increase in loxA and loxB mRNAs in the elongating hypocotyl region. Similarly, loxP1 mRNA levels increase rapidly when pea plants are wilted. loxA and loxB mRNA levels also increase in wounded soybean leaves, and these mRNAs accumulate in soybean suspension cultures treated with 20 M methyl jasmonate. These results demonstrate that LOX gene expression is modulated in response to water deficit and wounding and suggest a role for lipoxygenase in plant responses to these stresses. 相似文献
2.
3.
4.
In order to elucidate the biosynthesis of long-chain polyunsaturated fatty acids (PUFAs) in plants we searched for a cDNA encoding a Delta(6)-specific PUFA elongase from Physcomitrella patens, which is known to contain high proportions of arachidonic acid (20:4 Delta(5,8,11,14)). An EST clone from P. patens was identified by its low homology to the yeast gene ELO1, which is required for the elongation of medium-chain fatty acids. We functionally characterized this cDNA by heterologous expression in Saccharomyces cerevisiae grown in the presence of several fatty acids. Analysis of the fatty acid profile of the transgenic yeast revealed that the cDNA encodes a protein that leads to the elongation of the C(18) Delta(6)-polyunsaturated fatty acids gamma-linolenic acid (18:3 Delta(6,9,12)) and stearidonic acid (18:4 Delta(6,9,12,15)), which were recovered to 45-51% as their elongation products. In contrast, linoleic and alpha-linolenic acids were hardly elongated and we could not measure any elongation of saturated and mono-unsaturated fatty acids (including 18:1 Delta(6)), indicating that the elongase is highly specific for the polyunsaturated nature of the fatty acid acting as substrate. 相似文献
5.
Recent findings indicate that lipid signaling is essential for plant resistance to pathogens. Besides oxylipins and unsaturated fatty acids known to play important signaling functions during plant-pathogen interactions, the very long chain fatty acid (VLCFA) biosynthesis pathway has been recently associated to plant defense through different aspects. VLCFAs are indeed required for the biosynthesis of the plant cuticle and the generation of sphingolipids. Elucidation of the roles of these lipids in biotic stress responses is the result of the use of genetic approaches together with the identification of the genes/proteins involved in their biosynthesis. This review focuses on recent observations which revealed the complex function of the cuticle and cuticle-derived signals, and the key role of sphingolipids as bioactive molecules involved in signal transduction and cell death regulation during plant-pathogen interactions.Key words: very long chain fatty acids (VLCFAs), plant-pathogen interactions, lipid signaling, sphingolipids, epicuticular waxes, lipid rafts, cuticle, plant defense 相似文献
6.
【目的】γ-丁基甜菜碱羟化酶是生物体内合成L-肉碱的关键酶。从假单胞菌(Pseudomonas sp.)L-1中克隆γ-丁基甜菜碱羟化酶基因,实现其在大肠杆菌(Escherichia coli)中的高效表达,并对表达产物进行酶学性质分析,为生物转化生产L-肉碱奠定基础。【方法】通过PCR克隆γ-丁基甜菜碱羟化酶基因,并将其开放阅读框(ORF)克隆至融合表达载体pET-15b;表达产物经His.Bind Resin纯化后对BBH进行酶学性质及三维空间结构分析;并以静止细胞进行L-肉碱的转化。【结果】成功地克隆了一个γ-丁基甜菜碱羟化酶基因bbh(GenBank:JQ250036),并实现了其在E.coli中的高效表达。融合蛋白以同源二聚体的形式存在,单个亚基的分子量约46.5 kDa,最适反应温度为30℃,最适反应pH为7.5。该酶在45℃以下稳定。在pH6.0时该酶有最高的pH稳定性。以表达bbh基因的重组大肠杆菌静止细胞转化L-肉碱,L-肉碱产量可达12.7mmol/L。【结论】Pseudomonas sp.L-1γ-丁基甜菜碱羟化酶与现有报道的bbh基因有较大的差异。由该基因表达的γ-丁基甜菜碱羟化酶能有效地转化γ-丁基甜菜碱生成L-肉碱。本研究不仅丰富了γ-丁基甜菜碱羟化酶基因资源,而且为L-肉碱的生物转化提供了一种新的转化方案。 相似文献
7.
8.
9.
Fazi B Melino S Di Sano F Cicero DO Piacentini M Paci M 《Biochemical and biophysical research communications》2006,342(3):881-886
Reticulons (RTNs) are endoplasmic reticulum-associated proteins widely distributed in plants, yeast, and animals. They are characterized by unique N-terminal parts and a common 200 amino acid C-terminal domain containing two long hydrophobic sequences. Despite their implication in many cellular processes, their molecular structure and function are still largely unknown. In this study, the reticulon family member RTN-1C has been expressed and purified in Escherichia coli and its molecular structure has been analysed by fluorescence and CD spectroscopy in different detergents in order to obtain a good solubility and a relative stability. The isotopically enriched protein has been also produced to perform structural studies by NMR spectroscopy. The preliminary results obtained showed that RTN-1C protein possesses helical transmembrane segments when a membrane-like environment is produced by detergents. Moreover, fluorescence experiments indicated the exposure of tryptophan side chains as predicted by structure prediction programs. We also produced the isotopically labelled protein and the procedure adopted allowed us to plan future NMR studies to investigate the biochemical behaviour of reticulon-1C and of its peptides spanning out from the membrane. 相似文献
10.
11.
A genomic fatty acid elongation 1 ( FAE1 ) clone was isolated from Crambe abyssinica . The genomic clone corresponds to a 1521-bp open reading frame, which encodes a protein of 507 amino acids. In yeast cells expression of CrFAE led to production of new very long chain monounsaturated fatty acids such as eicosenoic (20 : 1Δ11 ) and erucic (22 : 1Δ13 ) acids. Seed-specific expression in Arabidopsis thaliana resulted in up to a 12-fold increase in the proportion of erucic acid. On the other hand, in transgenic high-erucic Brassica carinata plants, the proportion of erucic acid was as high as 51.9% in the best transgenic line, a net increase of 40% compared to wild type. These results indicate that the CrFAE gene encodes a condensing enzyme involved in the biosynthesis of very long-chain fatty acids utilizing monounsaturated and saturated acyl substrates, with a strong capability for improving the erucic acid content. 相似文献
12.
H Hatt G Gisselmann C H Wetzel 《Cellular and molecular biology, including cyto-enzymology》1999,45(3):285-291
The human olfactory system can recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants begins with the binding of an odorant ligand to a specific receptor protein on the olfactory neuron cell surface. To address the problem of olfactory perception at a molecular level, we have cloned, functionally expressed and characterized the first human olfactory receptor (OR 17-40). Application of a mixture of hundred different odorants elicited a transient increase in intracellular calcium at HEK 293-cells which were transfected with a plasmid containing the receptor encoding DNA and a membrane import sequence. By subdividing the odorant mixture in smaller groups we could identify a single component which represented the only effective substance: helional. Testing some structurally closely related molecules we found only one other compound which also could activate the receptor: heliotropyl acetone. All other compounds tested were completely ineffective. These findings represent the beginning of molecular understanding of odorant recognition in humans. 相似文献
13.
Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants 总被引:1,自引:0,他引:1
Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described. 相似文献
14.
Kubiak TM Larsen MJ Burton KJ Bannow CA Martin RA Zantello MR Lowery DE 《Biochemical and biophysical research communications》2002,291(2):313-320
Described in this report is a successful cloning and characterization of a functionally active Drosophila sulfakinin receptor designated DSK-R1. When expressed in mammalian cells, DSK-R1 was activated by a sulfated, Met(7-->Leu(7)-substituted analog of drosulfakinin-1, FDDY(SO(3)H)GHLRF-NH(2) ([Leu(7)]-DSK-1S). The interaction of [Leu(7)]-DSK-1S with DSK-R1 led to a dose-dependent intracellular calcium increase with an EC(50) in the low nanomolar range. The observed Ca(2+) signal predominantly resulted from activation of pertussis toxin (PTX)-insensitive signaling pathways pointing most likely to G(q/11) involvement in coupling to the activated receptor. The unsulfated [Leu(7)]-DSK-1 was ca. 3000-fold less potent than its sulfated counterpart which stresses the importance of the sulfate moiety for the biological activity of drosulfakinin. The DSK-R1 was specific for the insect sulfakinin since two related vertebrate sulfated peptides, human CCK-8 and gastrin-II, were found inactive when tested at concentrations up to 10(-5) M. To our knowledge, the cloned DSK-R1 receptor is the first functionally active Drosophila sulfakinin receptor reported to date. 相似文献
15.
16.
Mendlovic F Ostoa-Saloma P Solís CF Martínez-Ocaña J Flisser A Laclette JP 《The Journal of parasitology》2004,90(4):891-893
Calreticulin is an endoplasmic reticulum protein involved in the homeostasis of intracellular Ca++ and other physiological processes. A complementary DNA clone containing the complete coding sequence of Taenia solium calreticulin (TsCRT) was isolated and characterized. Recombinant TsCRT was expressed in bacteria as a 50-kDa protein that specifically bound calcium when tested in a radioassay. The deduced amino acid sequence has 47-50% identity with other reported calreticulins. Poor recognition of TsCRT by human and pig sera with confirmed cysticercosis discourages its use for diagnosis of the disease. However, further characterization and localization studies could provide insights into the role of TsCRT in T. solium physiology and host-parasite interactions. 相似文献
17.
Hao J Balagurumoorthy P Sarilla S Sundaramoorthy M 《Biochemical and biophysical research communications》2005,338(3):1507-1514
The most commonly occurring sialic acid, N-acetylneuraminic acid, is the repeating unit in polysialic acid chain of human neuronal cell adhesion molecule as well as in capsular polysialic acid of neuroinvasive bacteria, Escherichia coli K1 and Neisseria meningitidis. Sialic acid synthesis and polymerization occur in slightly different pathways in animals and bacteria. N-Acetylneuraminic acid (NeuNAc) is synthesized by the condensation of phosphoenolpyruvate and N-acetylmannosamine by NeuNAc synthase in bacteria. The mammalian homologue N-acetylneuraminic acid-9-phosphate (NeuNAc-9-P) synthase uses N-acetylmannosamine-6-phosphate in the condensation reaction to produce NeuNAc-9-P. Both subfamilies of sialic acid synthases possess N-terminal triosephosphate isomerase barrel domain and C-terminal antifreeze protein domain. We report cloning of the genes, expression, purification, and characterization of human NeuNAc-9-P synthase and N. meningitidis NeuNAc synthase. Stability of the purified enzymes and effects of pH and temperature on their activities were evaluated. Enzyme kinetics and preliminary mutagenesis experiments reveal the importance of C-terminal antifreeze protein domain and a conserved cysteine residue for the enzyme activities. 相似文献
18.
超长链脂肪酸延长酶家族基因影响生物体的多种生理功能。文中克隆了家蚕的一个该家族成员Bmelo424基因,其ORF为558 bp。该基因的蛋白序列预测有4个跨膜结构域,并有6个丝氨酸磷酸化位点、8个苏氨酸磷酸化位点和4个酪氨酸磷酸化位点,其亚细胞定位于内质网中,二级结构分析结果显示其α-螺旋和β-折叠股分别占26.7%和20%。荧光定量PCR结果显示Bmelo424基因在家蚕各组织均有表达,尤其在头部表达量最高。通过在酿酒酵母中异源表达Bmelo424基因的方法研究其对脂肪酸延伸的作用,GC-MS结果表明,携带pYES2-Bmelo424重组质粒的酿酒酵母的C16:1n-7脂肪酸含量有显著提高,而C16:0、C18:0和C18:1n-9的含量下降。温度胁迫结果显示,Bmelo424基因能够提高酿酒酵母的低温适应能力,但却降低其高温适应能力。这为探究家蚕Bmelo424基因的功能提供了参考。 相似文献
19.
20.
To examine the defence response in Brassica carinata we differentially screened a cDNA library made from CuCl2-treated (Cu) leaves. The sequence of 17 of the 27 cDNA clones examined that showed Cu-induction had a high similarity to defence genes from other plant species. Among other clones that showed higher expression in the Cu leaves were two cDNAs encoding polypeptides of 351 and 250 amino acids, designated BcCJS1 and BcCJAS1. BcCJS1 had similarity to S-adenosyl-l -methionine: salicylic acid carboxyl methyltransferase from Clarkia breweri. However, the enzyme activity was not found in extracts from E. coli expressing BcCJS1. BcCJAS1 did not show extensive similarity to any genes with known function in the databases but it did contain three regions of amino acid sequence that are frequently found in amidotransferases. A third Cu-induced mRNA, Bcp6PGL, showed very high (86%) similarity to a putative 6-phosphogluconolactonase (6PGL) from Arabidopsis thaliana. In addition to Cu induction, BcCJS1 expression was induced by methyl jasmonate (MeJA) and salicylic acid (SA), BcCJAS1 expression by MeJA, SA and abscisic acid and Bcp6PGL expression by MeJA. The expression of all three genes increased after Alternaria brassicae infection. BcCJS1 and BcCJAS1 were induced within 1 h after MeJA- but not until 3 h after SA-treatment. The expression of both genes was systemically induced after infection with a compatible or incompatible fungal pathogen. SA systemically induced only BcCJAS1. The effects of various inhibitors of signalling pathways on expression of the three genes were studied. 相似文献