首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 608 毫秒
1.
目的:探讨肌球蛋白轻链激酶(MLCK)钙调蛋白(CaM)结合位点突变体对肌球蛋白ATP酶活性的影响.方法:构建牛胃重组全长野生型MLCK CaM结合位点突变型蛋白(△CaM/MLCK);孔雀绿方法检测△CaM/MLCK对肌球蛋白的Mg2+-ATP酶活性的影响.结果:在无Ca2+/CaM存在时,随着△△CaM/MLCK浓度的增加,非磷酸化肌球蛋白的Mg2+-ATP酶活性明显增加;而磷酸化肌球蛋白的Mg2+-ATP酶活性明显降低.结论:△CaM/MLCK对肌球蛋白Mg2+-ATP酶活性的影响表明MLCK具有非激酶活性.  相似文献   

2.
肌球蛋白轻链激酶(myosin light chain kinase, MLCK)具有激酶活性和非激酶活性,在平滑肌收缩过程中起着关键酶调控的作用.为探寻MLCK的非激酶活性区域对MLCK活性的影响,以进一步阐明MLCK的非激酶活性在调节平滑肌收缩过程中的分子机制.采用PCR技术构建MLCK部分氨基酸缺失的重组表达载体pGEX-F6-5/D,经大肠杆菌表达得到可溶性GST融合蛋白,利用SDS-PAGE及Western 印迹鉴定表达的MLCK在细胞中的分布,结果还显示,提取液的上清和沉淀中均有MLCK片段的表达.运用亲和层析技术分离并纯化删除前、后表达的MLCK片段(F6.5和F6-5/D),经谷胱甘肽琼脂糖凝胶 4B 纯化,SDS-PAGE鉴定显示为单一表达条带.应用EnzChek磷分析试剂盒和孔雀绿两种方法分别测定不同浓度的MLCK对非磷酸化肌球蛋白Mg2+-ATP酶活性的影响.两种MLCK的片段均具有激活ATP酶活性的作用,并随MLCK浓度的增加,酶的活性增加.比较删除前后不同MLCK片段对ATP酶活性的影响结果显示,删除MLCK片段1002位丙氨酸至1019位亮氨酸后,对ATP酶的激活作用较删除前明显降低,表明删除的部分氨基酸序列为MLCK非激酶活性所必需的区域.利用电镜技术观察到MLCK片段(F6.5)使非磷酸化肌球蛋白构象发生明显的变化.加入MLCK片段后肌球蛋白的构象由非活性型转化为活性型,并且MLCK片段还具有促进肌球蛋白单体形成肌丝的作用.  相似文献   

3.
肌球蛋白轻链激酶(myosin light chain kinase,MLCK)具有激酶和非激酶活性,在平滑肌收缩过程中起着关键酶调控的作用.为进一步阐明MLCK非激酶活性在平滑肌收缩过程中的调节作用,利用已删除部分激酶区域的MLCK重组体(pGEXF6.5)在大肠杆菌中进行表达,采用亲和层析技术纯化表达的MLCK片段,应用EnzChek磷分析试剂盒检测MLCK片段对磷酸化肌球蛋白、水解重酶解肌球蛋白(heavymeromyosin,HMM)及肌球蛋白亚片段1(subfragmentl,S1)ATP酶活性的影响,体外检测MLCK片段对肌动蛋白肌丝运动的调节.研究结果显示,pGEX-F6.5重组表达载体在大肠杆菌中以可溶性GST融合蛋白的形式表达.该融合蛋白经Glutathione-Sepharose4B纯化、SDS-PAGE鉴定得到较纯的单一表达条带.纯化的MLCK片段对磷酸化肌球蛋白、HMM和S1的ATP酶活性均有明显激活作用.MLCK片段激活磷酸化肌球蛋白ATP酶活性为:Vmax=(19.426±1.669)倍;Km=(0.486±0.106)μmol/L,MLCK片段对磷酸化HMM和S1的ATP酶活性也有相似的刺激作用.体外肌丝运动研究表明,随着MLCK片段浓度的增加,磷酸化肌球蛋白与肌动蛋白结合的数量不断增加,肌丝运动的速度也随之增加.上述结果表明,MLCK的C端非激酶活性具有调节磷酸化的肌球蛋白ATP酶活性及肌丝运动的作用.  相似文献   

4.
目的:平滑肌肌球蛋白轻链激酶(myosin light chainkinase,MLCK)具有激酶活性和非激酶活性,在平滑肌收缩过程中起着关键酶调控的作用.为探寻MLCK的非激酶活性区域对MLCK活性的影响,本实验利用分子生物学技术构建了肌球蛋白轻链激酶CaM结合位点突变体,并纯化出重组的MLCK表达的蛋白质,为深入研究MLCK的非激酶活性在调节平滑肌收缩过程中的分子机制提供了实验基础.方法:利用野生型MLCK全长的cDNA序列设计CaM结合位点的突变引物,利用PCR技术进行定点突变,获得CaM结合位点的突变体(△CaM/MLCK).在大肠杆茵中表达重组CaM结合位点的突变体(△CaM/MLCK),通过亲和层析及凝胶过滤进行分离纯化重组蛋白,SDS-PAGE检测表达及纯化的重组蛋白.结果:构建重组MLCK钙调蛋白结合位点突变体(△CaM/MLCK),△CaM/MLCK在大肠杆菌中以可溶形式大量表达并得到纯化.结论:成功构建重组MLCK钙调蛋白结合位点突变体(△CaM/MLCK)并获得纯化的表达蛋白质.  相似文献   

5.
在有Ca2+和钙调蛋白存在时,肌球蛋白轻链激酶催化肌球蛋白磷酸化,促使肌动蛋白激活的肌球蛋白(肌动球蛋白)Mg2+-ATP酶活性显著增加.然而,肌球蛋白磷酸化水平与Mg2+-ATP酶之间的关系是非线性的,原肌球蛋白可以进一步增加Mg2+-ATP酶的活性,但仍不改变它们之间的非线性关系.肌球蛋白轻链激酶的合成肽抑制剂抑制了肌球蛋白磷酸化和Mg2+-ATP酶活性,并导致平滑肌去膜肌纤维的等长收缩张力与速度的降低.结果提示肌球蛋白轻链激酶参与脊椎动物平滑肌收缩的调节过程,肌球蛋白轻链磷酸化作用会引起平滑肌收缩  相似文献   

6.
为了阐明非磷酸化肌球蛋白在平滑肌细胞迁移中的作用,研究探讨了非磷酸化肌球蛋白是否介导了血小板衍生生长因子(PDGF)诱导豚鼠脑基底动脉平滑肌细胞(GbaSM-4)的迁移。研究结果显示,20ng/ml以下剂量的PDGF可诱导GbaSM-4细胞发生迁移,此时肌球蛋白轻链(MLC20)磷酸化水平无变化。该迁移作用可被肌球蛋白特异性抑制剂blebbistatin所拮抗。应用RNA干扰技术抑制肌球蛋白轻链激酶表达,经免疫印迹检测经果显示,MLC20的磷酸化水平发生了显著下降;但对PDGF诱导的迁移作用无影响;在RNA干扰后blebbistatin也可抑制其迁移作用。体外ATP酶活性测定结果显示,blebbistatin对从平滑肌中提取的非磷酸化肌球蛋白的ATP酶活性有明显的抑制作用,其主要作用位点位于肌球蛋白头的头部S1。上述结果提示,非磷酸化的肌球蛋白参与了PDGF诱导的平滑肌细胞迁移。  相似文献   

7.
肌球蛋白轻链激酶 (MLCK)的活性片段 (MLCKF)能比完整的MLCK更有效地、以非钙依赖性的方式磷酸化肌球蛋白轻链 (MLC2 0 )。该片段是用胰蛋白酶水解MLCK ,再经DEAE 5 2柱层析分离而获得的 ,分子量约为 6 1kD。Western印迹已证实该MLCKF与完整的MLCK同源。MLCKF对肌球蛋白轻链的磷酸化作用及其作用特征通过甘油电泳及ScoinImage扫描软件检测 ,肌球蛋白ATP酶活性通过分光光度法检测。实验结果证实 ,MLCKF催化的MLC2 0 非钙依赖性磷酸化 (CIPM)比MLCK催化的CIPM效力高、耗能多 ,但比MLCK催化的MLC2 0 钙依赖性磷酸化 (CDPM)效力低、耗能少 ;MLCKF催化的CIPM与MLCK催化的CIPM均较MLCK催化的CDPM稳定 ,不易受温育温度、温育时间及离子浓度等变化的影响 ,且对MLCK抑制剂ML 9敏感性低。  相似文献   

8.
在有Ca^2+和钙调蛋白存在时,肌球蛋白轻链激酶催化肌球蛋白磷酸化,促使肌动蛋白激活的肌球蛋白(肌动球蛋白)Mg^2+-ATP酶活性显增加,然而,肌旧白磷酸水平化与Mg^2+-ATP酶活性显增加,然而,肌球蛋白磷酸化水平与Mg^2+=ATP酶之间的关系是非线性的,原肌球蛋白可以进一步增加Mg^2+-ATP酶的活性,但仍不改变它们之间的非线性关系,肌球蛋白边激酶的分成肽抑制剂抑制了肌球蛋白磷酸化  相似文献   

9.
目的:探讨小檗碱对平滑肌肌球蛋白功能及胃肠平滑肌收缩性的影响.方法:以平滑肌肌球蛋白Mg2+-ATPase活性、肌球蛋白磷酸化以及胃与肠道平滑肌的收缩振幅为指标,考察小檗碱对平滑肌肌球蛋白Mg2+-ATPase活性和肌球蛋白磷酸化程度的影响,及其对离体小肠与胃平滑肌条收缩性的影响.结果:(1)在肌球蛋白轻链的Ca2+依赖性磷酸化反应中.小檗碱能抑制磷酸化肌球蛋白Mg2+-ATPase活性;(2)在肌球蛋白轻链的Ca2+依赖性磷酸化反应中,小檗碱可显著抑制磷酸化肌球蛋白轻链磷酸化程度;(3)小檗碱对大鼠离体小肠及胃平滑肌条收缩性均具有抑制作用.且均呈剂量依赖性.结论:小檗碱可通过抑制平滑肌肌球蛋白的功能,抑制胃肠道平滑肌的收缩性.  相似文献   

10.
平滑肌收缩调节的信号转导   总被引:10,自引:0,他引:10  
平滑肌细胞内信号转导主要有肌球蛋白轻链激酶(MLCK)和蛋白激酶C(PKC)途径。前者通过肌浆内Ca^2+浓度升高,激活钙调蛋白(CaM)依赖性MLCK,催化肌球蛋白轻链丝氨酸(Ser)-19磷酸化,肌球蛋白ATP酶活性增加,肌丝滑行,肌肉收缩。肌浆内Ca^2+浓度的恢复使MLCK失活,肌球蛋白轻链磷酸酶(MLCP)使肌球蛋白脱磷酸化,肌肉舒张。近来有证据表明PKC信号转导途径通过影响细肌丝相关蛋  相似文献   

11.
Myosin light chain kinase (MLCK) is a multifunctional regulatory protein of smooth muscle contraction [IUBMB Life 51 (2001) 337, for review]. The well-established mode for its regulation is to phosphorylate the 20 kDa myosin light chain (MLC 20) to activate myosin ATPase activity. MLCK exhibits myosin-binding activity in addition to this kinase activity. The myosin-binding activity also stimulates myosin ATPase activity without phosphorylating MLC 20 [Proc. Natl. Acad. Sci. USA 96 (1999) 6666]. We engineered an MLCK fragment containing the myosin-binding domain but devoid of a catalytic domain to explore how myosin is stimulated by this non-kinase pathway. The recombinant fragment thus obtained stimulated myosin ATPase activity by V(max)=5.53+/-0.63-fold with K(m)=4.22+/-0.58 microM (n=4). Similar stimulation figures were obtained by measuring the ATPase activity of HMM and S1. Binding of the fragment to both HMM and S1 was also verified, indicating that the fragment exerts stimulation through the myosin heads. Since S1 is in an active form regardless of the phosphorylated state of MLC 20, we conclude that the non-kinase stimulation is independent of the phosphorylating mode for activation of myosin.  相似文献   

12.
Actin-activation of unphosphorylated gizzard myosin   总被引:2,自引:0,他引:2  
The effect of light chain phosphorylation on the actin-activated ATPase activity and filament stability of gizzard smooth muscle myosin was examined under a variety of conditions. When unphosphorylated and phosphorylated gizzard myosins were monomeric, their MgATPase activities were not activated or only very slightly activated by actin, and when they were filamentous, their MgATPase activities could be stimulated by actin. At pH 7.0, the unphosphorylated myosin in the presence of ATP required 2-3 times as much Mg2+ for filament formation as did the phosphorylated myosin. The amount of stimulation of the unphosphorylated myosin filaments depended upon pH, temperature, and the presence of tropomyosin. At pH 7.0 and 37 degrees C and at pH 6.8 and 25 degrees C, the MgATPase activity of filamentous, unphosphorylated, gizzard myosin was stimulated 10-fold by actin complexed with gizzard tropomyosin. These tropomyosin-actin-activated ATPase activities were 40% of those of the phosphorylated myosin. Under other conditions, pH 7.5 and 37 degrees C and pH 7.0 and 25 degrees C, even though the unphosphorylated myosin was mostly filamentous, its MgATPase activity was stimulated only 4-fold by tropomyosin-actin. Thus, both unphosphorylated and phosphorylated gizzard myosin filaments appear to be active, but the cycling rate of the unphosphorylated myosin is less than that of the phosphorylated myosin. Active unphosphorylated myosin may help explain the ability of smooth muscles to maintain tension in the absence of myosin light chain phosphorylation.  相似文献   

13.
J P Rieker  J H Collins 《FEBS letters》1987,223(2):262-266
Calmodulin-dependent myosin light chain kinase isolated from chicken intestinal brush border phosphorylates brush border myosin at an apparently single serine identical to that phosphorylated by smooth muscle myosin light chain kinase. Phosphorylation to 1.8 mol phosphate/mol myosin activated the myosin actin-activated ATPase about 10-fold, to about 50 nmol/min per mg. Myosin phosphorylated on its light chains could then be further phosphorylated to a total of 3.2 mol phosphate per mol by brush border calmodulin-dependent heavy chain kinase. Heavy chain phosphorylation did not alter the actin-activated ATPase of either myosin prephosphorylated on its light chains or of unphosphorylated myosin.  相似文献   

14.
Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. This protein is an alternatively spliced product of the myosin heavy-chain gene containing the C-terminal rod part of myosin and a unique N-terminal domain. We have recently reported that this unique domain is a target for phosphorylation by gizzard smooth muscle myosin light chain kinase (MLCK) and molluscan twitchin, which contains a MLCK-like domain. To elucidate the role of myorod phosphorylation in catch muscle, a peptide corresponding to the specific N-terminal region of the protein was synthesized in phosphorylated and unphosphorylated form. We report, for the first time, that unphosphorylated full-length myorod and its unphosphorylated N-terminal synthetic peptide are able to interact with rabbit F-actin and thin filaments from molluscan catch muscle. The binding between thin filaments and the peptide was Ca2+-dependent. In addition, we found that phosphorylated N-terminal peptide of myorod has higher affinity for myosin compared to the unphosphorylated peptide. Together, these observations suggest the direct involvement of the N-terminal domain of myorod in the regulation of molluscan catch muscle.  相似文献   

15.
Phosphorylation of chicken gizzard myosin light chain in myofibril and its effect on myofibrillar ATPase activity were investigated in the contracted state of myofibrils. When myofibrils were incubated for two hours at 30 degreeds C with ATP, magnesium and calcium, the myosin light chain was phosphorylated by endogenous light-chain kinase. Standing overnight, the phosphorylated light chain was dephosphorylated by endogenous light-chain phosphatase. Control myofibril had much higher ATPase activity than phosphorylated and phosphorylated-dephosphorylated myofibrils. It was very interesting that the phosphorylated and phosphorylated-dephosphorylated myofibrils were quite similar in ATPase activity. However, phosphorylated myofibril differed from phosphorylated-dephosphorylated myofibril in Ca2+ dependency of Mg2+-ATPase activity. The phosphorylated-dephosphorylated myofibril was not affected by the presence or absence of Ca2+. In contrast, phosphorylated myofibril apparently showed a negative Ca2+-sensitivity. On the other hand, the results indicating that the superprecipitation gel formed by phosphorylated-dephosphorylated myosin could not be dissolved in 0.6 M NaCl, suggest that the phosphorylation-dephosphorylation process of the actomyosin system in gizzard myofibril results in stronger actin-myosin interaction.  相似文献   

16.
Myosin was isolated from extracts of a clonal cell line of pheochromocytoma (PC12) cells by ammonium sulfate fractionation and gel filtration. This myosin consisted of heavy chains and two light chains (20 and 17 kDa). The 20 kDa light chain could be phosphorylated by a protein kinase which was also present in the extracts and which eluted after myosin from the gel filtration column. Myosin phosphorylation was partly inhibited by EGTA and by the calmodulin-inhibiting drug trifluoperazine. The Mg2+-ATPase of phosphorylated myosin, but not of unphosphorylated myosin, was activated by skeletal muscle actin. Ca2+ did not affect the Mg2+-ATPase activity of either myosin preparation at low ionic strength. The phosphorylation of myosin may activate a contractile mechanism controlling the Ca2+-dependent secretion of norepinephrine from the cells.  相似文献   

17.
ATP-dependent movement of actin filaments on smooth muscle myosin was investigated by using the in vitro motility assay method in which myosin was fixed on the surface of a coverslip in a phosphorylated or an unphosphorylated state. Actin filaments slid on gizzard myosin phosphorylated with myosin light chain kinase (MLCK) at a rate of 0.35 micron/s, but did not slide at all on unphosphorylated myosin. The movement of actin filaments on phosphorylated myosin was stopped by perfusion of phosphatase. Subsequent perfusion with a solution containing MLCK, calmodulin, and Ca2+ enabled actin filaments to move again. The sliding velocities on monophosphorylated and diphosphorylated myosin by MLCK were not different. Actin filaments did not move on myosin phosphorylated with protein kinase C (PKC). The sliding velocity on myosin phosphorylated with both MLCK and PKC was identical to that on myosin phosphorylated only with MLCK. Gizzard tropomyosin enhanced the sliding velocity to 0.76 micron/s. Gizzard caldesmon decreased the sliding velocity with increase in its concentration. At a 5-fold molar ratio of caldesmon to actin, the movement stopped completely. This inhibitory effect of caldesmon was relieved upon addition of excess calmodulin and Ca2+.  相似文献   

18.
Smooth muscle myosin light chain kinase (MLCK) is known to bind to thin filaments and myosin filaments. Telokin, an independently expressed protein with an identical amino acid sequence to that of the C-terminal domain of MLCK, has been shown to bind to unphosphorylated smooth muscle myosin. Thus, the functional significance of the C-terminal domain and the molecular morphology of MLCK were examined in detail. The C-terminal domain was removed from MLCK by alpha-chymotryptic digestion, and the activity of the digested MLCK was measured using myosin or the isolated 20-kDa light chain (LC20) as a substrate. The results showed that the digestion increased K(m) for myosin 3-fold whereas it did not change the value for LC20. In addition, telokin inhibited the phosphorylation of myosin by MLCK by increasing K(m) but only slightly increased K(m) for LC20. Electron microscopy indicated that MLCK was an elongated molecule but was flexible so as to form folded conformations. MLCK was crosslinked to unphosphorylated heavy meromyosin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the absence of Ca(2+)/calmodulin (CaM), and electron microscopic observation of the products revealed that the MLCK molecule bound to the head-tail junction of heavy meromyosin. These results suggest that MLCK binds to the head-tail junction of unphosphorylated myosin through its C-terminal domain, where LC20 can be promptly phosphorylated through its catalytic domain following the Ca(2+)/CaM-dependent activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号