首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper deals with the power dissipation caused by exposure of biological cells to electric fields of various frequencies. With DC and sub-MHz AC frequencies, power dissipation in the cell membrane is of the same order of magnitude as in the external medium. At MHz and GHz frequencies, dielectric relaxation leads to dielectric power dissipation gradually increasing with frequency, and total power dissipation within the membrane rises significantly. Since such local increase can lead to considerable biochemical and biophysical changes within the membrane, especially at higher frequencies, the bulk treatment does not provide a complete picture of effects of an exposure. In this paper, we theoretically analyze the distribution of power dissipation as a function of field frequency. We first discuss conductive power dissipation generated by DC exposures. Then, we focus on AC fields; starting with the established first-order model, which includes only conductive power dissipation and is valid at sub-MHz frequencies, we enhance it in two steps. We first introduce the capacitive properties of the cytoplasm and the external medium to obtain a second-order model, which still includes only conductive power dissipation. Then we enhance this model further by accounting for dielectric relaxation effects, thereby introducing dielectric power dissipation. The calculations show that due to the latter component, in the MHz range the power dissipation within the membrane significantly exceeds the value in the external medium, while in the lower GHz range this effect is even more pronounced. This implies that even in exposures that do not cause a significant temperature rise at the macroscopic, whole-system level, the locally increased power dissipation in cell membranes could lead to various effects at the microscopic, single-cell level.  相似文献   

2.
We derive an analytical model of the potential differences induced across plasma and internal organelle membranes in suspended cells exposed to oscillatory electric fields. Multiple shells are modeled using iterative applications of the single-shell calculation with mobile charges. This work is motivated, in part, by recent results suggesting the ability to use alternating current (ac) fields to noninvasively monitor enzyme activity within internal membranes, particularly the mitochondrial electron transport chain. Previous work, on induced transmembrane voltages in cells subjected to ac fields, has mainly been limited to oscillatory potentials across the plasma membrane. Here we first develop a three-membrane model, consisting of a plasma membrane surrounding inner and outer membranes representing an internal organelle, such as a mitochondrion. Frequency-dependent transmembrane potentials are modeled for spherical, weakly conducting membrane shells enclosing a conductive cytoplasm surrounding an idealized internal organelle. We then use a two-shell model to simulate induced ac membrane potentials of a suspended isolated mitochondrion in which the outer membrane is usually much more permeable than the inner membrane.  相似文献   

3.
4.
In this article, the transmembrane voltage induced on erythrocyte, codocyte, ovalocyte and spherocyte cell models exposed to a linearly polarised electromagnetic plane wave of frequency 1800 MHz is calculated. For this purpose, a finite element (FE) numerical technique with adaptive meshing is used. The results show that the value of the induced voltage on the original erythrocyte shape is higher than the one observed on the rest of the altered cell geometries studied. The erythrocyte shape and the membrane electric permittivity are shown to play a fundamental role on the values of the induced transmembrane voltage.  相似文献   

5.
The action on intracellular cyclic AMP (cAMP) of therapeutically used 4000-Hz electric fields was investigated and compared with 50-Hz data. Cultured mouse fibroblasts were exposed for 5 minutes to 4000-Hz sine wave internal electric fields between 3 mV/m and 30 V/m applied within culture medium. A statistically significant decrease in cellular cAMP concentration relative to unexposed cells was observed for fields higher than 10 mV/m. The drop in cAMP was most pronounced at lower field strengths (71 % of controls at 30 mV/m) and tended to disappear at higher field strengths. An increase of cAMP content was observed with 50-Hz electric fields, as was also the case when 4000-Hz fields were modulated with certain low frequencies.  相似文献   

6.
The application of electric pulses in cells increases membrane permeability. This phenomenon is called electroporation. Current electroporation models do not explain all experimental findings: part of this problem is due to the limitations of numerical methods. The Equivalent Circuit Method (ECM) was developed in an attempt to solve electromagnetic problems in inhomogeneous and anisotropic media. ECM is based on modeling of the electrical transport properties of the medium by lumped circuit elements as capacitance, conductance, and current sources, representing the displacement, drift, and diffusion current, respectively. The purpose of the present study was to implement a 2-D cell Model Development Environment (MDE) of ionic transport process, local anisotropy around cell membranes, biological interfaces, and the dispersive behaviour of tissues. We present simulations of a single cell, skeletal muscle, and polygonal cell arrangement. Simulation of polygonal form indicates that the potential distribution depends on the geometrical form of cell. The results demonstrate the importance of the potential distributions in biological cells to provide strong evidences for the understanding of electroporation.  相似文献   

7.
Recently, it has been reported that exposure to high-strength electric fields can influence electrocardiogram (ECG) patterns, heart rates, and blood pressures in various species of animals. Our studies were designed to evaluate these reported effects and to help clarify some of the disagreement present in the literature. Various cardiovascular variables were measured in Sprague-Dawley rats exposed or sham-exposed to 60-Hz electric fields at 80 or 100 kV/m for periods up to four months. No significant differences in heart rates, ECG patterns, blood pressures, or vascular reactivity were observed between exposed and sham-exposed rats after 8 hours, 40 hours, 1 month, or 4 months of exposure. Blood pressure and heart rate measurements, made during exposure to a 100-kV/m electric field for one hour, revealed no significant differences between exposed and sham-exposed groups. In addition, physiologic reserve capacity, measured in rats subjected to low temperature after exposure to 100 kV/m for one month, showed that electric-field exposure had no significant effect on physiological response to cold stress. Our studies cannot be directly compared to the work of other investigators because of differences in animal species and electric-field characteristics. However, our failure to detect any cardiovascular changes may have been the result of 1) eliminating secondary field effects such as shocks, audible noise, corona, and ozone; 2) minimizing steady-state microcurrents between the mouth of the animal and watering devices; and 3) minimizing electric-field-induced vibration of the electrodes and animal cages.  相似文献   

8.
A substantial body of literature exists to study the dynamics of single cells exposed to short duration (<1 μs), high peak power (~1 MV/m) transient electric fields. Much of this research is limited to traditional fluorescence-based microscopy techniques, which introduce exogenous agents to the culture and are only sensitive to a single molecular target. Quantitative phase imaging (QPI) is a coherent imaging modality which uses optical path length as a label-free contrast mechanism, and has proven highly effective for the study of single-cell dynamics. In this work, we introduce QPI as a useful imaging tool for the study of cells undergoing cytoskeletal remodeling after nanosecond pulsed electric field (nsPEF) exposure. In particular, we use cell swelling, dry mass and disorder strength measurements derived from QPI phase images to monitor the cellular response to nsPEFs. We hope this demonstration of QPI's utility will lead to a further adoption of the technique for the study of directed energy bioeffects.  相似文献   

9.
Human umbilical vein endothelial cells were exposed to sinusoidal electric fields of 0.3 or 30 kV/m, 50 Hz, for 24 h. Changes in intracellular calcium concentration ([Ca(2+)](i)) induced by ATP-stimulation in the absence of extracellular Ca(2+) were observed in individual cells. No differences were observed between the exposure and sham-exposure groups in [Ca(2+)](i) resting level before ATP-stimulation, or in the [Ca(2+)](i) peak levels induced by stimulation. However, the duration of the initial transients in [Ca(2+)](i) following an ATP stimulus was significantly prolonged by exposure to a 30 kV/m field. The inositol trisphosphate receptor inhibitor, xestospongin C, inhibited the ATP-induced elevation in [Ca(2+)](i) in both the exposure and sham-exposure groups. The ATP-receptor P2Y appeared to play an important role in the increase of [Ca(2+)](i). The present results suggest that an extremely low-frequency electric field affects the function of vascular endothelial cells by a mechanism involving activation of P2Y.  相似文献   

10.
There have been a number of reports in the literature concerning growth-related changes in various animal species exposed to high-strength electric fields. Many of the laboratories reporting such effects have not documented and controlled for the secondary factors that are associated with generating high-strength electric fields (ie, corona, ozone, harmonic distortion, cage vibration, spark discharge). We have designed an exposure system in which we eliminated or minimized these secondary factors, therefore enabling us to examine only the effects of electric fields per se. Sprague-Dawley rats and Swiss-Webster mice were exposed to 60-Hz electric fields at kV/m for up to four months. In 17 individual experiments, we found a greater number of experiments in which the exposed rats had lower body weights than controls. This trend was not evident in data obtained from 14 individual mouse experiments. In more exhaustive growth studies, we found no significant differences in body weights, organ weights, or O2 consumption between exposed and sham-exposed controls. Our failure to detect any major changes in growth was probably the result of eliminating or minimizing the secondary factors associated with electric field exposure.  相似文献   

11.

Background  

Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood.  相似文献   

12.
This study was designed to assess the neuroendocrine response of male Long-Evans rats to sustained or intermittent 60-Hz electric fields when exposed for 1 or 3 h at 100 kV/m. No significant differences were noted in corticosterone, prolactin, or thyrotropin levels between exposed and sham-exposed rats. A statistically significant increase (P less than .01) in growth hormone was noted in rats exposed to intermittent electric fields for 3 h. Emphasis was placed on good experimental design and the need to avoid standard laboratory stressors (excessive handling, temperature extremes, transportation, noise, etc.) known to be present in many biomedical studies. The importance of avoiding reactions due to extraneous factors in experiments predicated on investigating physiological function in relation to electric field exposure is discussed.  相似文献   

13.
Intracellular free Ca2+ concentration ([Ca2+]i) in embryonic chick cerebellar granule cells loaded with fluo-3/AM and exposed to a single pulsed electric field was investigated using a confocal laser scanning microscope and fluorescent microscope equipped with CCD video imaging system.The results showed that [Ca2+]i increased immediately and rose to the peak rapidly as the cells exposed to a single pulsed electric field.The amplitude and rate of the increases of [Ca2+]i depend on the intensity of external electric field.In the presence of Ca2+ chelant EGTA or Ca2+ channels blocker La3+ in the pulsation solutions,the increase of [Ca2+]i was still observable.It was also observed that [Ca2+]i of different intracellular areas in the cell elevated simultaneously while the peak of the increase of [Ca2+]i in the poles of the cell preceded to the peak in its somata and recovered to a plateau within a short time.  相似文献   

14.
Intracellular free Ca2+ concentration ([Ca2+]i) in embryonic chick cerebellar granule cells loaded with fluo-3/AM and exposed to a single pulsed electric field was investigated using a confocal laser scanning microscope and fluorescent microscope equipped with CCD video imaging system. The results showed that [Ca2+]i increased immediately and rose to the peak rapidly as the cells exposed to a single pulsed electric field. The amplitude and rate of the increases of [Ca2+]i depend on the intensity of external electric field. In the presence of Ca2+ chelant EGTA or Ca2+ channels blocker La3+ in the pulsation solutions, the increase of [Ca2+]i was still observable. It was also observed that [Ca2+]i of different intracellular areas in the cell elevated simultaneously while the peak of the increase of [Ca2+]i in the poles of the cell preceded to the peak in its somata and recovered to a plateau within a short time.  相似文献   

15.
An increased incidence and severity of a brownish coloration of hair has been observed around the nose and on the ears of female rats that were chronically exposed to 60-Hz electric fields. Microscopic examination of the colored areas revealed a red-brown globular deposit on hair shafts in affected areas without signs of physical injury.  相似文献   

16.
Evaluations of reproductive and developmental toxicology, including teratology, were included as part of a broad screening study in Hanford Miniature swine (HMS) to detect effects of exposure to electric fields. One group (E) was exposed to a uniform, vertical, 60-Hz, 30-kV/m electric field for 20 h/day, 7 days/week; sham-exposed (SE) swine were housed in a separate, environmentally equivalent building. The first generation (F0) gilts were bred after 4 months of study; some were killed for teratologic assays at 100 days of gestation (dg), and the others produced an F1 generation of offspring. The pooled incidence of terata in these litters (teratologic assays and live births) was similar in the E and SE groups. The F0 females, which produced the F1 generation, were bred again after 18 months of exposure and were killed at 100 dg. Malformation incidence in E litters (75%) was significantly greater than in SE litters (29%). No consistent differences in litter size, fetal mass, or mass of fetal organs were detected. The F1 gilts were bred at 18 months of age; defective offspring were found in significantly more of the E litters (71%) than in SE litters (33%). These F1 females were bred again 10 months later and teratologic assays were performed on their second litters at 100 dg. The percentage of litters with malformed fetuses was essentially identical in the E and SE groups (70% and 73%, respectively). There appears to be an association between chronic exposure to a strong electric field and developmental effects in swine, although the change in incidence of malformations between generations and between the first and second breedings makes it impossible to conclude unequivocally that there is a cause-and-effect relation.  相似文献   

17.
A measure of taste-aversion (TA) learning was used in three experiments to 1) determine whether exposure to intense 60-Hz electric fields can produce TA learning in male Sprague-Dawley rats, and 2) establish a dose-response function for the behavior in question. In Experiment 1, four groups of eight rats each were distributed into one of two exposures (69 ± 5 kV/m or 133 ± 10 kV/m) or into one of two sham-exposure groups. Conditioning trials paired 0.1% sodium saccharin in water with 3 h of exposure to a 60-Hz electric field. Following five conditioning trials, a 20-min, two-bottle preference test between water and saccharin-flavored water failed to reveal TA conditioning in exposed groups. In Experiment 2, four groups of eight rats each (34 ± 2 kV/m or 133 ± 10 kV/m and two sham-exposed groups) were treated as before. Electric-field exposure had no effect on TA learning. Experiment 3 tested for a possible synergy between a minimal dose (for TA learning) of cyclophosphamide (6 mg/kg) and 5 h of exposure to 133 ± 10 kV/m electric fields in a dark environment under conditions otherwise similar to those of Experiments 1 and 2. The results indicated no TA learning as reflected in the relative consumption of saccharin.  相似文献   

18.
We examined the effects of electric fields (EFs) on the activity and subcellular distribution of protein kinase C (PKC) of living HL60 cells. Sixty Hertz AC sinusoidal EFs (1.5–1.000 mV/cm p-p) were applied for 1 h to cells (107/ml) in Teflon chambers at 37 °C in the presence or absence of 2 μM phorbol 12-myristate 13-acetate (PMA). PMA stimulation alone evoked intracellular translocation of PKC from the cytosolic to particulate fractions. In cells that were exposed to EFs (100–1,000 mV/cm) without PMA, a loss of PKC activity from the cytosol, but no concomitant rise in particulate PKC activity, was observed. In the presence of PMA. EFs (33–330 mV/cm) also accentuated the expected loss of PKC activity from the cytosol and augmented the rise in PKC activity in the particulate fraction. These data show that EFs alone or combined with PMA promote down-regulation of cytosolic PKC activity similar to that evoked by mitogens and tumor promoters but that it does not elicit the concomitant rise in particulate activity seen with those agents. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Short-circuit currents, surface electric fields, and axial current densities were measured in electrically grounded guinea pigs exposed to a uniform, vertical, ELF electric field. These data are 70–110% of corresponding values obtained in grounded rats exposed to the same electric field.  相似文献   

20.
A series of three experiments was performed to determine the effects of 30-day exposures to uniform 60-Hz electric fields (100 kV/m) on reproduction and on growth and development in the fetuses and offspring of rats. In the first experiment, exposure of females for 6 days prior to and during the mating period did not affect their reproductive performance, and continued exposure through 20 days of gestation (dg) did not affect the viability, size, or morphology of their fetuses. In the second experiment, exposure of the pregnant rat was begun on 0 dg and continued until the resulting offspring reached 8 days of age. In the third experiment, exposure began at 17 dg and continued through 25 days of postnatal life. In the second and third experiments, no statistically significant differences suggesting impairment of the growth or survival of exposed offspring were detected. In the second experiment, a significantly greater percentage of the exposed offspring showed movement, standing, and grooming at 14 days of age than among-sham-exposed offspring. There was a significant decrease at 14 days in the percentage of exposed offspring displaying the righting reflex in the second experiment and negative geotropism in the third experiment. These differences were all transient and were not found when the animals were tested again at 21 days of age. Evaluation of the reproductive integrity of the offspring of the second experiment did not disclose any deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号