首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Trinucleotide repeats associated with human disease.   总被引:16,自引:4,他引:12       下载免费PDF全文
M Mitas 《Nucleic acids research》1997,25(12):2245-2254
Triplet repeat expansion diseases (TREDs) are characterized by the coincidence of disease manifestation with amplification of d(CAG. CTG), d(CGG.CCG) or d(GAA.TTC) repeats contained within specific genes. Amplification of triplet repeats continues in offspring of affected individuals, which generally results in progressive severity of the disease and/or an earlier age of onset, phenomena clinically referred to as 'anticipation'. Recent biophysical and biochemical studies reveal that five of the six [d(CGG)n, d(CCG)n, (CAG)n, d(CTG)n and d(GAA)n] complementary sequences that are associated with human disease form stable hairpin structures. Although the triplet repeat sequences d(GAC)n and d(GTC)n also form hairpins, repeats of the double-stranded forms of these sequences are conspicuously absent from DNA sequence databases and are not anticipated to be associated with human disease. With the exception of d(GAG)n and d(GTG)n, the remaining triplet repeat sequences are unlikely to form hairpin structures at physiological salt and temperature. The details of hairpin structures containing trinucleotide repeats are summarized and discussed with respect to potential mechanisms of triplet repeat expansion and d(CGG.CCG) n methylation/demethylation.  相似文献   

3.
潘学峰 《遗传学报》2006,33(1):1-11
与三核苷酸重复序列CAG.CTG、CGG·CCG和GAA·TTC扩增和缺失有关的分子机制尚不能得到清楚的阐释.体外研究表明,上述疾病相关的重复序列可以在体外形成non-B二级结构,并介导重复序列扩增.然而,迄今为止,类似的观察尚未在体内研究过程中得以实现.利用模型生物大肠杆菌和酵母等进行的有关研究并不能模拟三核苷酸重复序列的扩增,这暗示三核苷酸重复序列的体内扩增可能与重复序列形成non-B二级结构关联性并不大.尽管理论上较长的三核苷酸重复序列可以在复制和后复制过程中较易形成non-B DNA二级结构,但这样的二级结构倾向于导致重复序列出现"脆性",而不是扩增.事实上,患者所具有的三核苷酸重复序列扩增并非一定需要通过non-B二级结构的介导,这些重复序列的扩增是可以通过一种RNA转录诱导的局部DNA重复序列的复制和其后的DNA重排得以发生.  相似文献   

4.
The mechanisms of trinucleotide repeat expansions, underlying more than a dozen hereditary neurological disorders, are yet to be understood. Here we looked at the replication of (CGG)(n) x (CCG)(n) and (CAG)(n) x (CTG)(n) repeats and their propensity to expand in Saccharomyces cerevisiae. Using electrophoretic analysis of replication intermediates, we found that (CGG)(n) x (CCG)(n) repeats significantly attenuate replication fork progression. Replication inhibition for this sequence becomes evident at as few as approximately 10 repeats and reaches a maximal level at 30 to 40 repeats. This is the first direct demonstration of replication attenuation by a triplet repeat in a eukaryotic system in vivo. For (CAG)(n) x (CTG)(n) repeats, on the contrary, there is only a marginal replication inhibition even at 80 repeats. The propensity of trinucleotide repeats to expand was evaluated in a parallel genetic study. In wild-type cells, expansions of (CGG)(25) x (CCG)(25) and (CAG)(25) x (CTG)(25) repeat tracts occurred with similar low rates. A mutation in the large subunit of the replicative replication factor C complex (rfc1-1) increased the expansion rate for the (CGG)(25) repeat approximately 50-fold but had a much smaller effect on the expansion of the (CTG)(25) repeat. These data show dramatic sequence-specific expansion effects due to a mutation in the lagging strand DNA synthesis machinery. Together, the results of this study suggest that expansions are likely to result when the replication fork attempts to escape from the stall site.  相似文献   

5.
Triplet repeat disease is a group of hereditary neurodegenerative disorders caused by expansion of trinucleotide repeats such as CAG/CTG, CGG/CCG, and GAA/TTC. Direct detection of the expansion in the patient's genome shortcuts the tedious process needed for identification of disease genes by conventional approaches. Here we describe a method to detect triplet repeat expansion from the hybridization signal intensity. Using a digoxigenin-labeled (CTG)9 probe, the hybridization intensity and number of repeats showed a good linear correlation. The technique detected expansion in genomic DNA in all cases with moderate or large expansion. Even in the case of a small expansion, this method could detect the mutant fragment. The technique has advantages over related techniques because it is more sensitive and can be applied to cases where a small repeat expansion is involved.  相似文献   

6.
7.
The onset and progress of Friedreich's ataxia (FRDA) is associated with the genetic instability of the (GAA).(TTC) trinucleotide repeats located within the frataxin gene. The instability of these repeats may involve the formation of an alternative DNA structure. Poly-purine (R)/poly-pyrimidine (Y) sequences typically form triplex DNA structures which may contribute to genetic instability. Conventional wisdom suggested that triplex structures formed by these poly-purine (R)/poly-pyrimidine (Y) sequences may contribute to their genetic instability. Here, we report the characterization of the single-stranded GAA and TTC sequences and their mixtures using NMR, UV-melting, and gel electrophoresis, as well as chemical and enzymatic probing methods. We show that the FRDA GAA/TTC, repeats are capable of forming various alternative structures. The most intriguing is the observation of a parallel (GAA).(TTC) duplex in equilibrium with the antiparallel Watson-Crick (GAA).(TTC) duplex. We also show that the GAA strands form self-assembled structures, whereas the TTC strands are essentially unstructured. Finally, we demonstrate that the FRDA repeats form only the YRY triplex (but not the RRY triplex) at neutral pH and the complete formation of the YRY triplex requires the ratio of GAA to TTC strand larger than 1:2. The structural features presented here and in other studies distinguish the FRDA (GAA)?(TTC) repeats from the fragile X (CGG).CCG), myotonic dystrophy (CTG).(CAG) and the Huntington (CAG).(CTG) repeats.  相似文献   

8.
Expanded tandem repeat sequences in DNA are associated with at least 40 human genetic neurological, neurodegenerative, and neuromuscular diseases. Repeat expansion can occur during parent-to-offspring transmission, and arise at variable rates in specific tissues throughout the life of an affected individual. Since the ongoing somatic repeat expansions can affect disease age-of-onset, severity, and progression, targeting somatic expansion holds potential as a therapeutic target. Thus, understanding the factors that regulate this mutation is crucial. DNA repair, in particular mismatch repair (MMR), is the major driving force of disease-associated repeat expansions. In contrast to its anti-mutagenic roles, mammalian MMR curiously drives the expansion mutations of disease-associated (CAG)·(CTG) repeats. Recent advances have broadened our knowledge of both the MMR proteins involved in disease repeat expansions, including: MSH2, MSH3, MSH6, MLH1, PMS2, and MLH3, as well as the types of repeats affected by MMR, now including: (CAG)·(CTG), (CGG)·(CCG), and (GAA)·(TTC) repeats. Mutagenic slipped-DNA structures have been detected in patient tissues, and the size of the slip-out and their junction conformation can determine the involvement of MMR. Furthermore, the formation of other unusual DNA and R-loop structures is proposed to play a key role in MMR-mediated instability. A complex correlation is emerging between tissues showing varying amounts of repeat instability and MMR expression levels. Notably, naturally occurring polymorphic variants of DNA repair genes can have dramatic effects upon the levels of repeat instability, which may explain the variation in disease age-of-onset, progression and severity. An increasing grasp of these factors holds prognostic and therapeutic potential.  相似文献   

9.
Structural basis for triplet repeat disorders: a computational analysis   总被引:3,自引:0,他引:3  
MOTIVATION: Over a dozen major degenerative disorders, including myotonic distrophy, Huntington's disease and fragile X syndrome, result from unstable expansions of particular trinucleotides. Remarkably, only some of all the possible triplets, namely CAG/CTG, CGG/CCG and GAA/TTC, have been associated with the known pathological expansions. This raises some basic questions at the DNA level. Why do particular triplets seem to be singled out? What is the mechanism for their expansion and how does it depend on the triplet itself? Could other triplets or longer repeats be involved in other diseases? RESULTS: Using several different computational models of DNA structure, we show that the triplets involved in the pathological repeats generally fall into extreme classes. Thus, CAG/CTG repeats are particularly flexible, whereas GCC, CGG and GAA repeats appear to display both flexible and rigid (but curved) characteristics depending on the method of analysis. The fact that (1) trinucleotide repeats often become increasingly unstable when they exceed a length of approximately 50 repeats, and (2) repeated 12-mers display a similar increase in instability above 13 repeats, together suggest that approximately 150 bp is a general threshold length for repeat instability. Since this is about the length of DNA wrapped up in a single nucleosome core particle, we speculate that chromatin structure may play an important role in the expansion mechanism. We furthermore suggest that expansion of a dodecamer repeat, which we predict to have very high flexibility, may play a role in the pathogenesis of the neurodegenerative disorder multiple system atrophy (MSA). CONTACT: pfbaldi@ics.uci.edu, yves@netid.com, brunak@cbs.dtu.dk, gorm@cbs.dtu.dk.  相似文献   

10.
Molecular mechanisms responsible for the genetic instability of DNA trinucleotide sequences (TRS) account for at least 20 human hereditary disorders. Many aspects of DNA metabolism influence the frequency of length changes in such repeats. Herein, we demonstrate that expression of Escherichia coli SOS repair proteins dramatically decreases the genetic stability of long (CTG/CAG)n tracts contained in plasmids. Furthermore, the growth characteristics of the bacteria are affected by the (CTG/CAG)n tract, with the effect dependent on the length of the TRS. In an E. coli host strain with constitutive expression of the SOS regulon, the frequency of deletions to the repeat is substantially higher than that in a strain with no SOS response. Analyses of the topology of reporter plasmids isolated from the SOS+ and SOS- strains revealed higher levels of negative supercoiling in strains with the constitutively expressed SOS network. Hence, we used strains with mutations in topoisomerases to examine the effect of DNA topology upon the TRS instability. Higher levels of negative DNA supercoiling correlated with increased deletions in long (CTG/CAG)n, (CGG/CCG)n and (GAA/TTC)n. These observations suggest a link between the induction of bacterial SOS repair, changes in DNA topology and the mechanisms leading to genetic instability of repetitive DNA sequences.  相似文献   

11.
Friedreich ataxia, myotonic dystrophy type 1 and 3 forms of intellectual disability, fragile X syndrome, FRAXE mental retardation, and FRA12A mental retardation are repeat expansion diseases caused by expansion of CTG.CAG, GAA.TTC, or CGG.CCG repeat tracts. These repeats are transcribed but not translated. They are located in different parts of different genes and cause symptoms that range from ataxia and hypertrophic cardiomyopathy to muscle wasting, male infertility, and mental retardation, yet recent reports suggest that, despite these differences, the repeats may share a common property, namely the ability to initiate repeat-mediated epigenetic changes that result in heterochromatin formation.  相似文献   

12.
DNA trinucleotide repeats, particularly CXG, are common within the human genome. However, expansion of trinucleotide repeats is associated with a number of disorders, including Huntington disease, spinobulbar muscular atrophy and spinocerebellar ataxia. In these cases, the repeat length is known to correlate with decreased age of onset and disease severity. Repeat expansion of (CAG)n, (CTG)n and (CGG)n trinucleotides may be related to the increased stability of alternative DNA hairpin structures consisting of CXG-CXG triads with X-X mismatches. Small-molecule ligands that selectively bound to CAG repeats could provide an important probe for determining repeat length and an important tool for investigating the in vivo repeat extension mechanism. Here we report that napthyridine-azaquinolone (NA, 1) is a ligand for CAG repeats and can be used as a diagnostic tool for determining repeat length. We show by NMR spectroscopy that binding of NA to CAG repeats induces the extrusion of a cytidine nucleotide from the DNA helix.  相似文献   

13.
The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo.  相似文献   

14.
15.
J. M. Darlow  DRF. Leach 《Genetics》1995,141(3):825-832
Unusual DNA secondary structures have been implicated in the expansion of trinucleotide repeat tracts that are associated with several human inherited disorders. We present evidence consistent with the folding of these trinucleotide repeats into hairpin loops at the center of a long DNA palindrome in vivo. Our assay utilizes a palindrome in bacteriophage λ, the center of which determines its ability to inhibit plaque formation in a manner that is consistent with folding into a hairpin or cruciform structure. We show that central inserts of even numbers of d(CAG)·d(CTG) repeats inhibit plaque formation more than do odd numbers. Both d(CAG)(2)·d(CTG)(2) and d(CGG)(2)·d(CCG)(2) central sequences behave like DNA sequences known to form two-base loops in vitro, suggesting that they may also form compact and stable loops. By contrast, repeats of d(GAC)·d(GTC) do not show any evidence consistent with unusual loop stability. These results agree with in vitro evidence that the unstable repeats can form hairpin secondary structures and suggest a favored position of folding. We discuss the potential roles of secondary structures, DNA replication and recombination in models of repeat tract expansion.  相似文献   

16.
17.
18.
Evidence for genetic anticipation has recently become an important subject of research in clinical psychiatric genetics. Renewed interest in anticipation was evoked by molecular genetic findings of a novel type of mutation termed "unstable DNA." The unstable DNA model can be construed as the "best fit" for schizophrenia twin and family epidemiological data. We have performed a large-scale Southern blot hybridization, asymmetrical PCR-based, and repeat expansion-detection screening for (CAG)n/(CTG)n and (CCG)n/(CGG)n expansions in eastern Canadian schizophrenia multiplex families demonstrating genetic anticipation. There were no differences in (CAG)n/(CTG)n and (CCG)n/(CGG)n pattern distribution either between affected and unaffected individuals or across generations. Our findings do not support the hypothesis that large (CAG)n/(CTG)n or (CCG)n/(CGG)n expansions are the major etiologic factor in schizophrenia. A separate set of experiments directed to the analysis of small (30-130 trinucleotides), Huntington disease-type expansions in individual genes is required in order to fully exclude the presence of (CAG)n/(CTG)n- or (CCG)n/(CGG)n-type unstable mutation.  相似文献   

19.
Fourteen genetic neurodegenerative diseases and three fragile sites have been associated with the expansion of (CTG)n•(CAG)n, (CGG)n•(CCG)n, or (GAA)n•(TTC)n repeat tracts. Different models have been proposed for the expansion of triplet repeats, most of which presume the formation of alternative DNA structures in repeat tracts. One of the most likely structures, slipped strand DNA, may stably and reproducibly form within triplet repeat sequences. The propensity to form slipped strand DNA is proportional to the length and homogeneity of the repeat tract. The remarkable stability of slipped strand DNA may, in part, be due to loop-loop interactions facilitated by the sequence complementarity of the loops and the dynamic structure of three-way junctions formed at the loop-outs.  相似文献   

20.
潘学峰  姜楠  陈细芳  周晓宏  丁良  段斐 《遗传》2014,36(12):1185-1194
R-环是由一个RNA:DNA杂交体和一条单链状态的DNA分子共同组成的三链核酸结构。其中, RNA:DNA杂交体的形成起因于基因转录所合成的RNA分子不能与模板分开, 或RNA分子重新与一段双链DNA分子中的一条链杂交。在基因转录过程中, 当转录泡遇到富含G碱基的非模板链区或位于某些与人类疾病有关的三核苷酸卫星DNA时, 转录泡后方累积的负超螺旋可促进R环形成。同时, 新生RNA分子未被及时加工、成熟或未被快速转运到细胞质等因素也会催生R环。研究表明, 细胞拥有多种管理R环的方法, 可以有效地管理R环的形成和处理已经形成的R环, 以尽量避免R环对DNA复制、基因突变和同源重组产生不利影响。文章重点分析了R-环的形成机制及R环对DNA复制、基因突变和同源重组的影响, 并针对R-环诱导的DNA复制在某些三核苷酸重复扩增有关的神经肌肉退行性疾病发生过程中的作用进行了分析和讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号