首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approximately 400-by-long portion of the 16s rRNA gene sequence has been determined for the venerid clamsChamelea gallina (Chioninae),Dosinia lupinus (Dosiniinae),Pitar rudis,Callista chione (Pitarinae),Tapes decussatus,T. philippinarum,Venerupis (=Paphia)aurea (Tapetinae), andVenus verrucosa (Venerinae). Neighbor-joining and maximum parsimony trees support the results of traditional classification methods at the subfamily level but do not support the concept of a genusTapes. The transversion divergence rate estimated on the basis of the palaeontological record for theC. gallina/V. verrucosa separation and for the Pitarinae is very close (0.14–0.16% per Myr, respectively) to that of ungulates and cetaceans, while the Tapetinae exhibit a much higher (0.36% per Myr) rate. Correspondence to: E. Olmo  相似文献   

2.
3.
Monotremes have traditionally been considered a remnant group of mammals descended from archaic Mesozoic stock, surviving to the present day on the relatively isolated Australian continent. Challenges to this orthodoxy have been spurred by discoveries of 'advanced' Cretaceous monotremes (Steropodon galmani, Archer, M., et al., 1985. First Mesozoic mammal from Australia-an Early Cretaceous monotreme, Nature. 318, 363-366) as well as by results from molecular data linking monotremes to therian mammals (specifically to marsupials in some studies). This paper reviews the monotreme fossil record and briefly discusses significant new information from additional Cretaceous Australian material. Mesozoic monotremes (including S. galmani) were a diverse group as evidenced by new material from the Early Cretaceous of New South Wales and Victoria currently under study. Although most of these new finds are edentulous jaws (limiting dental comparisons and determination of dietary niches), a range of sizes and forms has been determined. Some of these Cretaceous jaws exhibit archaic features-in particular evidence for the presence of a splenial bone in S. galmani-not seen in therian mammals or in post-Mesozoic (Tertiary and Quaternary) monotreme taxa. Tertiary monotremes were either archaic ornithorhynchids (toothed platypuses in the genera Monotrematum and Obdurodon) or tachyglossids (large echidnas in the genera Megalibgwilia and Zaglossus). Quaternary ornithorhynchid material is referable to the sole living platypus species Ornithorhynchus anatinus. Quaternary echidnas, however, were moderately diverse and several forms are known (Megalibgwilia species; 'Zaglossus' hacketti; Zaglossus species and Tachyglossus aculeatus).  相似文献   

4.
5.
Dating divergences in the Fungal Tree of Life: review and new analyses   总被引:5,自引:0,他引:5  
Taylor JW  Berbee ML 《Mycologia》2006,98(6):838-849
  相似文献   

6.
SUMMARY: DnaSP is a Windows integrated software package for the analysis of the DNA polymorphism from nucleotide sequence data. DnaSP version 3 incorporates several methods for estimating the amount and pattern of DNA polymorphism and divergence, and for conducting neutrality tests. AVAILABILITY: For academic uses, DnaSP is available free of charge from: http://www.bio.ub.es/julio/DnaSP.html CONTACT: julio@porthos.bio.ub.es  相似文献   

7.
The timing and order of divergences within the genus Rattus have, to date, been quite speculative. In order to address these important issues we sequenced six new whole mitochondrial genomes from wild-caught specimens from four species, Rattus exulans, Rattus praetor, Rattus rattus and Rattus tanezumi. The only rat whole mitochondrial genomes available previously were all from Rattus norvegicus specimens. Our phylogenetic and dating analyses place the deepest divergence within Rattus at approximately 3.5 million years ago (Mya). This divergence separates the New Guinean endemic R. praetor lineage from the Asian lineages. Within the Asian/Island Southeast Asian clade R. norvegicus diverged earliest at approximately 2.9Mya. R. exulans and the ancestor of the sister species R. rattus and R. tanezumi subsequently diverged at approximately 2.2Mya, with R. rattus and R. tanezumi separating as recently as approximately 0.4Mya. Our results give both a better resolved species divergence order and diversification dates within Rattus than previous studies.  相似文献   

8.
9.
Deuterostomes are a monophyletic group of animals that include the vertebrates, invertebrate chordates, ambulacrarians and xenoturbellids. Fossil representatives from most major deuterostome groups, including some phylum-level crown groups, are found in the Lower Cambrian, suggesting that evolutionary divergence occurred in the Late Precambrian, in agreement with some molecular clock estimates. Molecular phylogenies, larval morphology and the adult heart/kidney complex all support echinoderms and hemichordates as a sister grouping (Ambulacraria). Xenoturbellids are a relatively newly discovered phylum of worm-like deuterostomes that lacks a fossil record, but molecular evidence suggests that these animals are a sister group to the Ambulacraria. Within the chordates, cephalochordates share large stretches of chromosomal synteny with the vertebrates, have a complete Hox complex and are sister group to the vertebrates based on ribosomal and mitochondrial gene evidence. In contrast, tunicates have a highly derived adult body plan and are sister group to the vertebrates based on the analyses of concatenated genomic sequences. Cephalochordates and hemichordates share gill slits and an acellular cartilage, suggesting that the ancestral deuterostome also shared these features. Gene network data suggest that the deuterostome ancestor had an anterior-posterior body axis specified by Hox and Wnt genes, a dorsoventral axis specified by a BMP/chordin gradient, and was bilaterally symmetrical with left-right asymmetry determined by expression of nodal.  相似文献   

10.
The position of the earliest-derived living molluscs, the Polyplacophora (chitons) and shell-less vermiform Aplacophora, remains highly contentious despite many morphological, developmental and molecular studies of extant organisms. These two groups are thought to represent either a basal molluscan grade or a clade (Aculifera) sister to the 'higher' molluscs (Conchifera). These incompatible hypotheses result in very different predictions about the earliest molluscs. A new cladistic analysis incorporating both Palaeozoic and extant molluscs is presented here. Our results support the monophyly of Aculifera and suggest that extant aplacophorans and polyplacophorans both derive from a disparate group of multivalved molluscs in two major clades. Reanalysis of the critical Ordovician taxon 'Helminthochiton' thraivensis shows that this animal lacks a true foot despite bearing polyplacophoran-like valves. Its position within our phylogenetic reconstruction indicates that many fossil 'polyplacophorans' in the order Palaeoloricata are likely to represent footless stem-group aplacophorans. 'H.' thraivensis and similar forms such as Acaenoplax may be morphological stepping stones between chitons and the shell-less aplacophorans. Our results imply that crown-group molluscan synapomorphies include serial repetition, the presence of a foot, a mineralized scleritome and a creeping rather than worm-like mode of life.  相似文献   

11.
12.

Background  

Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public.  相似文献   

13.
To investigate the phylogenetic and phylogeographical relationships of arvicolines, we use several Western European ground voles. More particularly, our study is focused on Microtus ( Terricola ) savii and M. ( T. ) pyrenaicus . These two allopatric species are usually considered as having originated from the same ancestor, possibly M . ( T. ) mariaclaudiae . We propose molecular and morphological approaches: nucleotidic data from the mitochondrial cytochrome b and 12S rRNA genes and global morphological analyses from the first lower molar. Four other Terricola species ( multiplex , lusitanicus , duodecimcostatus , subterraneus ) were added to the data set for both analyses, and two other vole species ( Clethrionomys glareolus and Chionomys nivalis ) as outgroup to the molecular analysis, and five fossil populations to the morphological one. Palaeontological data are also widely taken into account. Both molecular and morphological analyses indicate that intra- Terricola relationships reflect the present-day geographical distribution of our data set species. Our results show that M. ( T. ) savii and M. ( T. ) pyrenaicus are from separate speciation events leading to two different biogeographical groups, respectively the Alpine–Italian group and the French–Iberian group, the latter being much more homogeneous. These speciation events could be related to Quaternary climatic changes, which induced southward migration, leading first to M. ( T. ) savii and second to M. ( T. ) pyrenaicus . The classical hypothesis of a geographical speciation for these two taxa from M. ( T. ) mariaclaudiae is invalid. However, the morphological data suggest a potential phylogenetic relationship between M. ( T. ) mariaclaudiae (ancestor) and M. ( T. ) pyrenaicus (descendant).  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 309–323.  相似文献   

14.
15.
16.
MOTIVATION: The statistical analysis of microarray data usually proceeds in a sequential manner, with the output of the previous step always serving as the input of the next one. However, the methods currently used in such analyses do not properly account for the fact that the intermediate results may not always be correct, then leading to cumulating error in the inferences drawn based on such steps. RESULTS: Here we show that, by an application of hierarchical Bayesian methodology, this sequential procedure can be replaced by a single joint analysis, while systematically accounting for the uncertainties in this process. Moreover, we can also integrate relevant functional information available from databases into such an analysis, thereby increasing the reliability of the biological conclusions that are drawn. We illustrate these points by analysing real data and by showing that the genes can be divided into categories of interest, with the defining characteristic depending on the biological question that is considered. We contend that the proposed method has advantages at two levels. First, there are gains in the statistical and biological results from the analysis of this particular dataset. Second, it opens up new possibilities in analysing microarray data in general.  相似文献   

17.
Considerable progress has been made recently in phylogenetic reconstruction in a number of groups of organisms. This progress coincides with two major advances in systematics: new sources have been found for potentially informative characters (i. e., molecular data) and (more importantly) new approaches have been developed for extracting historical information from old or new characters (i. e., Hennigian phylogenetic systematics or cladistics). The basic assumptions of cladistics (the existence and splitting of lineages marked by discrete, heritable, and independent characters, transformation of which occurs at a rate slower than divergence of lineages) are discussed and defended. Molecular characters are potentially greater in quantity than (and usually independent of) more traditional morphological characters, yet their great simplicity (i. e., fewer potential character states; problems with determining homology), and difficulty of sufficient sampling (particularly from fossils) can lead to special difficulties. Expectations of the phylogenetic behavior of different types of data are investigated from a theoretical standpoint, based primarily on variation in the central parameter λ (branch length in terms of expected number of character changes per segment of a tree), which also leads to possibilities for character and character state weighting. Also considered are prospects for representing diverse yet clearly monophyletic clades in larger-scale cladistic analyses, e. g., the exemplar method vs. “compartmentalization” (a new approach involving substituting an inferred “archetype” for a large clade accepted as monophyletic based on previous analyses). It is concluded that parsimony is to be preferred for synthetic, “total evidence” analyses because it appears to be a robust method, is applicable to all types of data, and has an explicit and interpretable evolutionary basis. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Molecular analyses of the relationships of placental mammals have shown a progressive congruence between mitogenomic and nuclear phylogenies. Some inconsistencies have nevertheless persisted, notably with respect to basal divergences. The current study has aimed to extend the representation of groups, whose position in the placental tree has been difficult to establish in mitogenomic studies. Both ML (maximum likelihood) and Bayesian analyses identified four basal monophyletic groups, Afroplacentalia (=Afrotheria: Hyracoidea, Proboscidea, Sirenia, Tenrecidea, Tubulidentata, Macroscelidea, Chrysochloridea), Xenarthra, Archontoglires (Primates, Dermoptera, Scandentia, Lagomorpha, Rodentia) and Laurasiaplacentalia (Lipotyphla, Chiroptera, Pholidota, Carnivora, Perissodactyla, Artiodactyla, Cetacea). All analyses joined Archontoglires and Laurasiaplacentalia on a common branch (Boreoplacentalia), but the relationship between Afroplacentalia, Xenarthra and Boreoplacentalia was not conclusively resolved. The phylogenomic hypothesis with a sister group relationship between Notoplacentalia (Afroplacentalia/Xenarthra) and Boreoplacentalia served as the basis for estimating the times of placental divergences using paleontologically well-supported mammalian calibration points. These estimates placed the basal placental divergence between Boreoplacentalia and Notoplacentalia at approximately 102 MYA (million years ago). The current estimates of ordinal placental divergences are congruent with recent estimates based on nuclear data, but inconsistent with paleontological notions that have placed the origin of essentially all placental orders within an interval of 5-10 MY in the early Tertiary. Among less deep divergences the estimates placed the split between Gorilla and Pan/Homo at approximately 11.5 MYA and that between Pan and Homo at approximately 8 MYA. As a consequence of these estimates, which are in accord with recent progress in primate paleontology, the earliest divergences among recent humans become placed approximately 270,000 years ago, i.e. approximately 100,000 years earlier than the traditional age of "Mitochondrial Eve". Comparison between the two new mt genomes of Hylomys suillus (short-tailed gymnure) patently demonstrates the inconsistency that may exist between taxonomic designations and molecular difference, as the distance between these two supposedly conspecific genomes exceeds that of the three elephantid genera Elephas, Mammuthus and Loxodonta. In accordance with the progressive use of the term Placentalia for extant orders and extinct taxa falling within this group we forward new proposals for the names of some superordinal clades of placental mammals.  相似文献   

19.
Species of the genus Sparassis in East Asia were investigated using morphology and DNA sequences data. Phylogenetic analyses inferred from sequences of the internal transcribed spacer (ITS), the nuclear gene coding for the ribosomal large subunit (nLSU) and partial gene coding RNA polymerase subunit II (rpb2) strongly supported lineages corresponding to morphological features. Three taxa, S. subalpina, S. cystidiosa f. flabelliformis and S. latifolia were recognized from East Asia, and the former two taxa are new to science. The occurrence of S. latifolia in Japan and in the Russian Far East was confirmed. Geographical divergences of Sparassis in the Holarctic were observed. Most species have relatively narrow distribution ranges, and taxa with intercontinental distributions were not detected. Divergence of species in the Northern Hemisphere in different clades appears to have taken place at different times: the S. latifolia-crispa-radicata species complex appears to have undergone a recent radiation, while the S. subalpina-brevipes-spathularia species complex represents a relatively ancient speciation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号