首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thiol-disulfide redox metabolism in platyhelminth parasites depends entirely on a single selenocysteine (Sec) containing flavoenzyme, thioredoxin glutathione reductase (TGR) that links the classical thioredoxin (Trx) and glutathione (GSH) systems. In the present study, we investigated the catalytic and structural properties of different variants of Fasciola gigantica TGR to understand the role of Sec. The recombinant full-length Sec containing TGR (FgTGRsec), TGR without Sec (FgTGR) and TGRsec without the N-terminal glutaredoxin (Grx) domain (?NTD-FgTGRsec) were purified to homogeneity. Biochemical studies revealed that Sec597 is responsible for higher thioredoxin reductase (TrxR) and glutathione reductase (GR) activity of FgTGRsec. The N-terminal Grx domain was found to positively regulate the DTNB-based TrxR activity of FgTGRsec. The FgTGRsec was highly sensitive to inhibition by auranofin (AF). The structure of FgTGR was modeled, and the inhibitor AF was docked, and binding sites were identified. Unfolding studies suggest that all three proteins are highly cooperative molecules since during GdnHCl-induced denaturation, a monophasic unfolding of the proteins without stabilization of any intermediate is observed. The Cm for GdnHCl induced unfolding of FgTGR was higher than FgTGRsec and ?NTD-FgTGRsec suggesting that FgTGR without Sec was more stable in solution than the other protein variants. The free energy of stabilization for the proteins was also determined. To our knowledge, this is also the first report on unfolding and stability analysis of any TGR.  相似文献   

2.
Platyhelminth parasites are a major health problem in developing countries. In contrast to their mammalian hosts, platyhelminth thiol-disulfide redox homeostasis relies on linked thioredoxin-glutathione systems, which are fully dependent on thioredoxin-glutathione reductase (TGR), a promising drug target. TGR is a homodimeric enzyme comprising a glutaredoxin domain and thioredoxin reductase (TR) domains with a C-terminal redox center containing selenocysteine (Sec). In this study, we demonstrate the existence of functional linked thioredoxin-glutathione systems in the cytosolic and mitochondrial compartments of Echinococcus granulosus, the platyhelminth responsible for hydatid disease. The glutathione reductase (GR) activity of TGR exhibited hysteretic behavior regulated by the [GSSG]/[GSH] ratio. This behavior was associated with glutathionylation by GSSG and abolished by deglutathionylation. The K(m) and k(cat) values for mitochondrial and cytosolic thioredoxins (9.5 microm and 131 s(-1), 34 microm and 197 s(-1), respectively) were higher than those reported for mammalian TRs. Analysis of TGR mutants revealed that the glutaredoxin domain is required for the GR activity but did not affect the TR activity. In contrast, both GR and TR activities were dependent on the Sec-containing redox center. The activity loss caused by the Sec-to-Cys mutation could be partially compensated by a Cys-to-Sec mutation of the neighboring residue, indicating that Sec can support catalysis at this alternative position. Consistent with the essential role of TGR in redox control, 2.5 microm auranofin, a known TGR inhibitor, killed larval worms in vitro. These studies establish the selenium- and glutathione-dependent regulation of cytosolic and mitochondrial redox homeostasis through a single TGR enzyme in platyhelminths.  相似文献   

3.
Cellular mechanisms that maintain redox homeostasis are crucial, providing buffering against oxidative stress. Glutathione, the most abundant low molecular weight thiol, is considered the major cellular redox buffer in most cells. To better understand how cells maintain glutathione redox homeostasis, cells of Saccharomyces cerevisiae were treated with extracellular oxidized glutathione (GSSG), and the effect on intracellular reduced glutathione (GSH) and GSSG were monitored over time. Intriguingly cells lacking GLR1 encoding the GSSG reductase in S. cerevisiae accumulated increased levels of GSH via a mechanism independent of the GSH biosynthetic pathway. Furthermore, residual NADPH-dependent GSSG reductase activity was found in lysate derived from glr1 cell. The cytosolic thioredoxin-thioredoxin reductase system and not the glutaredoxins (Grx1p, Grx2p, Grx6p, and Grx7p) contributes to the reduction of GSSG. Overexpression of the thioredoxins TRX1 or TRX2 in glr1 cells reduced GSSG accumulation, increased GSH levels, and reduced cellular glutathione Eh′. Conversely, deletion of TRX1 or TRX2 in the glr1 strain led to increased accumulation of GSSG, reduced GSH levels, and increased cellular Eh′. Furthermore, it was found that purified thioredoxins can reduce GSSG to GSH in the presence of thioredoxin reductase and NADPH in a reconstituted in vitro system. Collectively, these data indicate that the thioredoxin-thioredoxin reductase system can function as an alternative system to reduce GSSG in S. cerevisiae in vivo.  相似文献   

4.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

5.
Thioredoxin glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both thioredoxin and glutathione disulfides (GSSG), thus playing a crucial role in maintaining redox homeostasis in the parasite. In line with this role, previous studies have demonstrated that SmTGR is a promising drug target for schistosomiasis. To aid in the development of efficacious drugs that target SmTGR, it is essential to understand the catalytic mechanism of SmTGR. SmTGR is a dimeric flavoprotein in the glutathione reductase family and has a head-to-tail arrangement of its monomers; each subunit has the components of both a thioredoxin reductase (TrxR) domain and a glutaredoxin (Grx) domain. However, the active site of the TrxR domain is composed of residues from both subunits: FAD and a redox-active Cys-154/Cys-159 pair from one subunit and a redox-active Cys-596'/Sec-597' pair from the other; the active site of the Grx domain contains a redox-active Cys-28/Cys-31 pair. Via its Cys-28/Cys-31 dithiol and/or its Cys-596'/Sec-597' thiol-selenolate, SmTGR can catalyze the reduction of a variety of substrates by NADPH. It is presumed that SmTGR catalyzes deglutathionylation reactions via the Cys-28/Cys-31 dithiol. Our anaerobic titration data suggest that reducing equivalents from NADPH can indeed reach the Cys-28/Cys-31 disulfide in the Grx domain to facilitate reductions effected by this cysteine pair. To clarify the specific chemical roles of each redox-active residue with respect to its various reactivities, we generated variants of SmTGR. Cys-28 variants had no Grx deglutathionylation activity, whereas Cys-31 variants retained partial Grx deglutathionylation activity, indicating that the Cys-28 thiolate is the nucleophile initiating deglutathionylation. Lags in the steady-state kinetics, found when wild-type SmTGR was incubated at high concentrations of GSSG, were not present in Grx variants, indicating that this cysteine pair is in some way responsible for the lags. A Sec-597 variant was still able to reduce a variety of substrates, albeit slowly, showing that selenocysteine is important but is not the sole determinant for the broad substrate tolerance of the enzyme. Our data show that Cys-520 and Cys-574 are not likely to be involved in the catalytic mechanism.  相似文献   

6.
Thioredoxin (Trx) is a protein disulfide reductase that, together with nicotinamide adenine dinucleotide phosphate (NADPH) and thioredoxin reductase (TrxR), controls oxidative stress or redox signaling via thiol redox control. Human cytosolic Trx1 has Cys32 and Cys35 as the active site and three additional cysteine residues (Cys62, Cys69, and Cys73), which by oxidation generates inactive Cys62 to Cys69 two-disulfide Trx. This, combined with TrxR with a broad substrate specificity, complicates assays of mammalian Trx and TrxR. We sought to understand the autoregulation of Trx and TrxR and to generate new methods for quantification of Trx and TrxR. We optimized the synthesis of two fluorescent substrates, di-eosin–glutathione disulfide (Di-E–GSSG) and fluorescein isothiocyanate-labeled insulin (FiTC–insulin), which displayed higher fluorescence on disulfide reduction. Di-E–GSSG showed a very large increase in fluorescence quantum yield but had a relatively low affinity for Trx and was also a weak direct substrate for TrxR, in contrast to GSSG. FiTC–insulin was used to develop highly sensitive assays for TrxR and Trx. Reproducible conditions were developed for reactivation of modified Trx, commonly present in frozen or oxidized samples. Trx in cell extracts and tissue samples, including plasma and serum, were subsequently analyzed, showing highly reproducible results and allowing measurement of trace amounts of Trx.  相似文献   

7.
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m−1 s−1) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.  相似文献   

8.
Thioredoxin and glutathione systems are the major thiol-dependent redox systems in animal cells. They transfer via the reversible oxidoreduction of thiols the reducing equivalents of NADPH to numerous substrates and substrate reductases and constitute major defenses against oxidative stress. In this study, we cloned from the helminth parasite Echinococcus granulosus two trans-spliced mRNA variants that encode thioredoxin glutathione reductases (TGR). These variants code for mitochondrial and cytosolic selenocysteine-containing isoforms that possess identical glutaredoxin (Grx) and thioredoxin reductase (TR) domains and differ exclusively in their N termini. Western blot analysis of subcellular fractions with specific anti-TGR antibodies showed that TGR is present in both compartments. The biochemical characterization of the native purified TGR suggests that the Grx and TR domains of the enzyme can function either coupled or independently of each other, because the Grx domain can accept electrons from either TR domains or the glutathione system and the TR domains can transfer electrons to either the fused Grx domain or to E. granulosus thioredoxin.  相似文献   

9.
10.
Mitochondria play an essential role in producing the energy required for seedling growth following imbibition. Heavy metals, such as cadmium impair mitochondrial functioning in part by altering redox regulation. The activities of two protein redox systems present in mitochondria, thioredoxin (Trx) and glutaredoxin (Grx), were analysed in the cotyledons and embryo of pea (Pisum sativum L.) germinating seeds exposed to toxic Cd concentration. Compared to controls, Cd-treated germinating seeds showed a decrease in total soluble protein content, but an increase in –SH content. Under Cd stress conditions, Grx and glutathione reductase (GR) activities as well as glutathione (GSH) concentrations decreased both in cotyledons and the embryo. Similar results were obtained with the Trx system: Trx and NADPH-dependent thioredoxin reductase (NTR) activities were not stimulated, whereas total NAD(P) contents diminished in the embryo. However, Cd enhanced the levels of all components of the Trx system in the cotyledons. On the other hand, Cd caused a significant increase in oxidative stress parameters such as the redox ratio of coenzymes (oxidized to reduced forms) and NAD(P)H oxidase activities. These results indicate that Cd induces differential redox responses on different seed tissues. We suggest that neither Grx system nor Trx one may improve the redox status of mitochondrial thiols in the embryo of germinating pea seeds exposed to Cd toxicity, but in the cotyledons the contribution of Trx/NTR/NADPH can be established in despite the vulnerability of the coenzyme pools due to enzymatic oxidation.  相似文献   

11.
Although the etiology of sporadic Parkinson disease (PD) is unknown, it is well established that oxidative stress plays an important role in the pathogenic mechanism. The thioredoxin (Trx) and glutaredoxin (Grx) systems are two central systems upholding the sulfhydryl homeostasis by reducing disulfides and mixed disulfides within the cell and thereby protecting against oxidative stress. By examining the expression of redox proteins in human postmortem PD brains, we found the levels of Trx1 and thioredoxin reductase 1 (TrxR1) to be significantly decreased. The human neuroblastoma cell line SH-SY5Y and the nematode Caenorhabditis elegans were used as model systems to explore the potential protective effects of the redox proteins against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. 6-OHDA is highly prone to oxidation, resulting in the formation of the quinone of 6-OHDA, a highly reactive species and powerful neurotoxin. Treatment of human cells with 6-OHDA resulted in an increased expression of Trx1, TrxR1, Grx1, and Grx2, and small interfering RNA for these genes significantly increased the cytotoxic effects exerted by the 6-OHDA neurotoxin. Evaluation of the dopaminergic neurons in C. elegans revealed that nematodes lacking trxr-1 were significantly more sensitive to 6-OHDA, with significantly increased neuronal degradation. Importantly, both the Trx and the Grx systems were also found to directly mediate reduction of the 6-OHDA-quinone in vitro and thus render its cytotoxic effects. In conclusion, our results suggest that the two redox systems are important for neuronal survival in dopamine-induced cell death.  相似文献   

12.
13.
Thioredoxin glutathione reductase (TGR) is a key flavoenzyme expressed by schistosomes that bridges two detoxification pathways crucial for the parasite survival in the host's organism. In this article we report the crystal structure (at 2.2 A resolution) of TGR from Schistosoma mansoni (SmTGR), deleted in the last two residues. The structure reveals the peculiar architecture of this chimeric enzyme: the small Glutaredoxin (Grx) domain at the N-terminus is joined to the large thioredoxin reductase (TR) one via an extended complementary surface, involving residues not conserved in the Grx superfamily; the TR domain interacts with an identical partner via its C-terminal domain, forming a dimer with a twisted "W" shape. Although lacking the penultimate Selenocysteine residue (Sec), the enzyme is still able to reduce oxidized glutathione. These data update the interpretation of the interdomain communication in TGR enzymes. The possible function of this enzyme in pathogenic parasites is discussed.  相似文献   

14.
Most organisms use two systems to maintain the redox homeostasis of cellular thiols. In the thioredoxin (Trx) system, NADPH sequentially reduces thioredoxin reductases (NTR), Trxs and protein disulfides. In the glutaredoxin (Grx) system, NADPH reduces the glutathione reductase enzyme occurring in most organisms, glutathione, Grxs, and protein disulfides or glutathione-protein mixed disulfides. As little is known concerning these enzymes in cyanobacteria, we have undertaken their analysis in the model strain Synechocystis PCC6803. We found that Grx1 and Grx2 are active, and that Grx2 but not Grx1 is crucial to tolerance to hydrogen peroxide and selenate. We also found that Synechocystis has no genuine glutathione reductase and uses NTR as a Grx electron donor, in a novel integrative pathway NADPH-NTR-Grx1-Grx2-Fed7 (ferredoxin 7), which operates in protection against selenate, the predominant form of selenium in the environment. This is the first report on the occurrence of a physical interaction between a Grx and a Fed, and of an electron transfer between two Grxs. These findings are discussed in terms of the (i) selectivity of Grxs and Feds ( Synechocystis possesses nine Feds), (ii) crucial importance of NTR for cell fitness and (iii) resistance to selenate, in absence of a Thauera selenatis -like selenate reductase.  相似文献   

15.
Metal toxicity often includes the generation of reactive oxygen species (ROS) and subsequent oxidative stress, but whether metals have different effects on the major thiol antioxidant systems is unknown. Here, we examine the effects of arsenic, cadmium, cesium, copper, iron, mercury, nickel, and zinc on glutathione (GSH), cytoplasmic thioredoxin-1 (Trx1), and mitochondrial thioredoxin-2 (Trx2) redox states. GSH/GSSG redox states were determined by HPLC, and Trx1 and Trx2 redox states were determined by Redox Western blot methods. Copper, iron, and nickel showed significant oxidation of GSH but relatively little oxidation of either Trx1 or Trx2. Arsenic, cadmium, and mercury showed little oxidation of GSH but significantly oxidized both Trx1 and Trx2. The magnitude of effects of arsenic, cadmium, and mercury was greater for the mitochondrial Trx2 (>60 mV) compared to the cytoplasmic Trx1 (20 to 40 mV). Apoptosis signal-regulating kinase 1 (ASK1) may be activated by two different pathways, one dependent upon GSH and glutaredoxin and the other independent of GSH and dependent upon thioredoxin. ASK1 activation and cell death were observed with metals that oxidized thioredoxins but not with metals that oxidized GSH. These findings show that metals have differential oxidative effects on the major thiol antioxidant systems and that activation of apoptosis may be associated with metal ions that oxidize thioredoxin and activate ASK1. The differential oxidation of the major thiol antioxidant systems by metal ions suggest that the distinct thiol/disulfide redox couples represented by GSH/GSSG and the thioredoxins may convey different levels of control in apoptotic and toxic signaling pathways.  相似文献   

16.
Glutaredoxins are small proteins with a conserved active site (-CXX(C/S)-) and thioredoxin fold. These thiol disulfide oxidoreductases catalyze disulfide reductions, preferring GSH-mixed disulfides as substrates. We have developed a new real-time fluorescence-based method for measuring the deglutathionylation activity of glutaredoxins using a glutathionylated peptide as a substrate. Mass spectrometric analysis showed that the only intermediate in the reaction is the glutaredoxin-GSH mixed disulfide. This specificity was solely dependent on the unusual gamma-linkage present in glutathione. The deglutathionylation activity of both wild-type Escherichia coli glutaredoxin and the C14S mutant was competitively inhibited by oxidized glutathione, with K(i) values similar to the K(m) values for the glutathionylated peptide substrate, implying that glutaredoxin primarily recognizes the substrate via the glutathione moiety. In addition, wild-type glutaredoxin showed a sigmoidal dependence on GSH concentrations, the activity being significantly decreased at low GSH concentrations. Thus, under oxidative stress conditions, where the ratio of GSH/GSSG is decreased, the activity of glutaredoxin is dramatically reduced, and it will only have significant deglutathionylation activity once the oxidative stress has been removed. Different members of the protein disulfide isomerases (PDI) family showed lower activity levels when compared with glutaredoxins; however, their deglutathionylation activities were comparable with their oxidase activities. Furthermore, in contrast to the glutaredoxin-GSH mixed disulfide intermediate, the only intermediate in the PDI-catalyzed reaction was PDI peptide mixed disulfide.  相似文献   

17.
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.  相似文献   

18.
Schistosomiasis is the second most widespread human parasitic disease. It is principally treated with one drug, praziquantel, that is administered to 100 million people each year; less sensitive strains of schistosomes are emerging. One of the most appealing drug targets against schistosomiasis is thioredoxin glutathione reductase (TGR). This natural chimeric enzyme is a peculiar fusion of a glutaredoxin domain with a thioredoxin selenocysteine (U)-containing reductase domain. Selenocysteine is located on a flexible C-terminal arm that is usually disordered in the available structures of the protein and is essential for the full catalytic activity of TGR. In this study, we dissect the catalytic cycle of Schistosoma mansoni TGR by structural and functional analysis of the U597C mutant. The crystallographic data presented herein include the following: the oxidized form (at 1.9 Å resolution); the NADPH- and GSH-bound forms (2.3 and 1.9 Å, respectively); and a different crystal form of the (partially) reduced enzyme (3.1 Å), showing the physiological dimer and the entire C terminus of one subunit. Whenever possible, we determined the rate constants for the interconversion between the different oxidation states of TGR by kinetic methods. By combining the crystallographic analysis with computer modeling, we were able to throw further light on the mechanism of action of S. mansoni TGR. In particular, we hereby propose the putative functionally relevant conformational change of the C terminus after the transfer of reducing equivalents from NADPH to the redox sites of the enzyme.  相似文献   

19.
Cellular redox, maintained by the glutathione (GSH)- and thioredoxin (Trx)-dependent systems, has been implicated in the regulation of a variety of biological processes. The redox state of the GSH system becomes oxidized when cells are induced to differentiate by chemical agents. The aim of this study was to determine the redox state of cellular GSH/glutathione disulfide (GSH/GSSG) and Trx as a consequence of progression from proliferation to contact inhibition and spontaneous differentiation in colon carcinoma (Caco-2) cells. Results showed a significant decrease in GSH concentration, accompanied by a 40-mV oxidation of the cellular GSH/GSSG redox state and a 28-mV oxidation of the extracellular cysteine/cystine redox state in association with confluency and increase in differentiation markers. The redox state of Trx did not change. Thus the two central cellular antioxidant and redox-regulating systems (GSH and Trx) were independently controlled. According to the Nernst equation, a 30-mV oxidation is associated with a 10-fold change in the reduced/oxidized ratio of a redox-sensitive dithiol motif. Therefore, the measured 40-mV oxidation of the cellular GSH/GSSG couple or the 28-mV oxidation of the extracellular cysteine/cystine couple should be sufficient to function in signaling or regulation of differentiation in Caco-2 cells.  相似文献   

20.
To explore whether glutathione regulates diapause determination and termina tion in the bivoltine silkworm Bombyx mori, we monitored the changes in glutathione redox cycle in the ovary of both diapanse and nondiapauseegg producers, as well as those in dia pause eggs incubated at different temperatures. The activity ofthioredoxin reductase (TrxR) was detected in ovaries but not in eggs, while neither ovaries nor eggs showed activity of glutathione peroxidase. A lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratio was observed in the ovary of diapauseegg producers, due to weaker reduction of oxidized glutathione (GSSG) to the reduced glutathione (GSH) catalyzed by glutathione reductase (GR) and TrxR. This indicates an oxidative shift in the glutathione redox cy cle during diapause determination. Compared with the 25℃treated diapause eggs, the 5℃treated diapause eggs showed lower GSH/GSSG ratio, a result of stronger oxidation of GSH catalyzed by thioredoxin peroxidase and weaker reduction of GSSG catalyzed by GR. Our study demonstrated the important regulatory role of glutathione in diapause determination and termination of the bivoltine silkworm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号