首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An aptamer can specifically bind to its target molecule, or hybridize with its complementary strand. A target bound aptamer complex has difficulty to hybridize with its complementary strand. It is possible to determine the concentration of target based on affinity separation system for the protein detection. Here, we exploited this property using C-reactive protein (CRP) specific RNA aptamers as probes that were immobilized by physical adsorption on carbon nanotubes (CNTs) activated gold interdigitated electrodes of capacitors. The selective binding ability of RNA aptamer with its target molecule was determined by change in capacitance after allowing competitive binding with CRP and complementary RNA (cRNA) strands in pure form and co-mixtures (CRP:cRNA=0:1, 1:0, 1:1, 1:2 and 2:1). The sensor showed significant capacitance change with pure forms of CRP/cRNA while responses reduced considerably in presence of CRP:cRNA in co-mixtures (1:1 and 1:2) because of the binding competition. At a critical CRP:cRNA ratio of 2:1, the capacitance response was dramatically lost because of the dissociation of adsorbed aptamers from the sensor surface to bind when excess CRP. Binding assays showed that the immobilized aptamers had strong affinity for cRNA (K(d)=1.98 μM) and CRP molecules (K(d)=2.4 μM) in pure forms, but low affinity for CRP:cRNA ratio of 2:1 (K(d)=8.58 μM). The dynamic detection range for CRP was determined to be 1-8 μM (0.58-4.6 μg/capacitor). The approach described in this study is a sensitive label-free method to detect proteins based on affinity separation of target molecules that can potentially be used for probing molecular interactions.  相似文献   

2.
In the present work, aptamers against aflatoxin M1 and aflatoxin B1 were generated and tested for creating proof of principle of recognition of aflatoxin M1 by generated aptamers. The aptamers were selected through the process referred as systematic evolution of ligands by exponential enrichment. A total of 41 different aptamer (36 aptamers for aflatoxin M1 and 5 for aflatoxin B1) sequences were obtained. The determination of dissociation constant (Kd) values revealed that aptamers generated against aflatoxin M1 exhibited Kd values in the range of 35–1515 nM. Selected aptamers were grouped on the basis of the presence of common motifs or G‐quadruplex. We find it interesting that one aptamer with no conserved motif or G‐quadruplex had lowest Kd value (Kd = 35 nM). This structural motif is very distinct from motifs present in other aptamers. The Kd values of selected aptamers for aflatoxin B1 were in the range of 96–221 nM. One aptamer from each group was further tested for its ability to be used in aptasensor. The aptamer recognized aflatoxin M1 as indicated by color change (red to purple or blue) of aptamer‐coated gold nanoparticles in the presence of 250–500 nM aflatoxin M1. The aptamers can be used in developing methods for detection/estimation/separation of aflatoxin or antidote for aflatoxin toxicity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
An aptamer is an artificial functional oligonucleic acid, which can interact with its target molecule with high affinity and specificity. Enzyme linked aptamer assay (ELAA) is developed to detect cocaine using aptamer fragment/cocaine configuration based on the affinity interaction between aptamer fragments with cocaine. The aptasensor was constructed by cleaving anticocaine aptamer into two fragments: one was assembled on a gold electrode surface, while the other was modified with biotin at 3'-end, which could be further labelled with streptavidin-horseradish peroxidase (SA-HRP). Upon binding with cocaine, the HRP-labelled aptamer fragment/cocaine complex formed on the electrode would increase the reduction current of hydroquinone (HQ) in the presence of H(2)O(2). The sensitivity and the specificity of the proposed electrochemical aptasensor were investigated by differential pulse voltammetry (DPV). The results indicated that the DPV signal change could be used to sensitively detect cocaine with the dynamic range from 0.1 μM to 50 μM and the detection limit down to 20 nM (S/N=3). The proposed aptasensor has the advantages of high sensitivity and low background current. Furthermore, a new configuration for ELAA requiring only a single aptamer sequence is constructed, which can be generalized for detecting different kinds of targets by cleaving the aptamers into two suitable segments.  相似文献   

4.
Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA‐aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd = 2.3 × 10?11). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Aptamers are nucleic acids that can selectively bind to a variety of targets. Aptamers usually undergo conformational transitions from a flexible or disordered structure into a rigid or ordered structure upon target-binding. This study describes a detection method for l-argininamide (l-Arm) and adenosine based on the conformational adaptability of nucleic acid aptamers. An abasic site (AP site) was formed in the stem and close to the target-binding site of a stem-loop aptamer as an anchoring pocket for a fluorescent ligand. 3,5-Diamino-6-chloro-2-pyrazine carbonitrile (DCPC), which can bind to AP site-containing DNA duplexes by pseudo-base pairing, was utilized as a signaling reporter for the target-binding. The binding of a target to an aptamer induces the tight pairing of bases flanking the AP site, so that DCPC can effectively bind to the stem. The binding of DCPC is accompanied by a significant enhancement of its fluorescence. This new sensing method without an antisense DNA strand was demonstrated by using l-Arm and its aptamer as a model. It was confirmed that the method can sensitively detect l-Arm with a detection limit of 2.1 μM. The proposed method was also applied to adenosine detection, where the reported sequence of an adenosine aptamer was slightly modified. The method based on an AP site-containing aptamer and an AP site-binding ligand was applicable to detection of a target in horse serum.  相似文献   

6.
A single-stranded DNA (ssDNA) aptamer was successfully developed to specifically bind to nicotinamide phosphoribosyl transferase (Nampt) through systematic evolution of ligands by exponential enrichment (SELEX) and successfully implemented in a gold-interdigitated (GID) capacitor-based biosensor. Surface plasmon resonance (SPR) analysis of the aptamer revealed high specificity and affinity (K(d)=72.52nM). Changes in surface capacitance/charge distribution or dielectric properties in the response of the GID capacitor surface covalently coupled to the aptamers in response to changes in applied AC frequency were measured as a sensing signal based on a specific interaction between the aptamers and Nampt. The limit of detection for Nampt was 1ng/ml with a dynamic serum detection range of up to 50ng/ml; this range includes the clinical requirement for both normal Nampt level, which is 15.8ng/ml, and Nampt level in type 2 diabetes mellitus (T2DM) patients, which is 31.9ng/ml. Additionally, the binding kinetics of aptamer-Nampt interactions on the capacitor surface showed that strong binding occurred with increasing frequency (range, 700MHz-1GHz) and that the dissociation constant of the aptamer under the applied frequency was improved 120-240 times (K(d)=0.3-0.6nM) independent on frequency. This assay system is an alternative approach for clinical detection of Nampt with improved specificity and affinity.  相似文献   

7.
肝癌位于我国肿瘤死亡率第2位,生存率较低。目前用于肝癌早期诊断的临床检查及血清肿瘤标志物检测的特异性与敏感性均较低,不能满足肝癌早期诊断和治疗的需要。核酸适配体与靶标分子结合的灵敏度高、特异性强,有巨大的临床诊断和治疗应用前景。本文利用双向热循环消减指数富集的配基系统进化(systematic evolution of ligands by exponential enrichment, SELEX)技术,分别以肝癌血清和健康人血清为靶标,经过19轮筛选,获得了肝癌血清特异性核酸适配体序列1 000余条,以及健康人血清特异性核酸适配体序列1 000余条,并从中各挑取了1条高丰度适配体序列,分别命名为Tc1和Tn1。采取了50例肝癌病人血清和50例健康人血清,对适配体Tc1和Tn1与靶标血清的结合特异性进行了检测。结果显示,Tc1和Tn1对两种靶标血清的检出率分别为92%和94%。说明Tc1可特异性与肝癌血清结合,Tn1可特异性与健康人血清结合。肝癌血清特异性核酸适配体的筛选获得,将为建立基于核酸适配体的肝癌血清检测新方法奠定基础。  相似文献   

8.
Like antibodies, aptamers are highly valuable as bioreceptor molecules for protein biomarkers because of their excellent selectivity, specificity and stability. The integration of aptamers with semiconducting materials offers great potential for the development of reliable aptasensors. In this paper we present an aptamer-based impedimetric biosensor using a nanocrystalline diamond (NCD) film as a working electrode for the direct and label-free detection of human immunoglobulin E (IgE). Amino (NH(2))-terminated IgE aptamers were covalently attached to carboxyl (COOH)-modified NCD surfaces using carbodiimide chemistry. Electrochemical impedance spectroscopy (EIS) was applied to measure the changes in interfacial electrical properties that arise when the aptamer-functionalized diamond surface was exposed to IgE solutions. During incubation, the formation of aptamer-IgE complexes caused a significant change in the capacitance of the double-layer, in good correspondence with the IgE concentration. The linear dynamic range of IgE detection was from 0.03 μg/mL to 42.8 μg/mL. The detection limit of the aptasensor reached physiologically relevant concentrations (0.03 μg/mL). The NCD-based aptasensor was demonstrated to be highly selective even in the presence of a large excess of IgG. In addition, the aptasensor provided reproducible signals during six regeneration cycles. The impedimetric aptasensor was successfully tested on human serum samples, which opens up the potential of using EIS for direct and label-free detection of IgE levels in blood serum.  相似文献   

9.
DNA aptamers were developed against lipopolysaccharide (LPS) from E. coli O111:B4 and shown to bind both LPS and E. coli by a colorimetric enzyme-based microplate assay. The polyclonal aptamers were coupled to human C1qrs protein either directly using a bifunctional linker or indirectly using biotinylated aptamers and a streptavidin-C1qrs complex. Both systems significantly reduced colony counts when applied to E. coli O111:B4 and K12 strains across a series of 10x dilutions of the bacteria in the presence of human serum; it was diluted 1: 10(3) in order to avoid significant bacterial lysis by the competing alternate pathway of complement activation. A number of candidate DNA aptamer sequences were cloned and sequenced from the anti-LPS aptamer library for future screening of antibacterial or "antibiotic" potential and to aid in eventual development of an alternative therapy for antibiotic-resistant bacterial infections.  相似文献   

10.
DNA aptamers were selected against recombinant human (rhu) cellular prion protein (PrP(C)) 23-231 by systematic evolution of ligands via a systematic evolution of ligands by exponential (SELEX) enrichment procedure using lateral flow chromatography. The SELEX procedure was performed with an aptamer library consisting of a randomized 40-nucleotide core flanked by 28-mer primer-binding sites that, theoretically, represented approximately 10(24) distinct nucleic acid species. Sixty nanograms of rhuPrP(C)23-231 immobilized in the center of a lateral flow device was used as the target molecule for SELEX. At the end of 6 iterations of SELEX, 13 distinct candidate aptamers were identified, of which, 3 aptamers represented 32%, 8%, and 5% of the sequences respectively. Eight aptamers, including the three most frequently occurring candidates, were selected for further evaluation. Selected aptamers bound to rhuPrP(C)23-231 at 10(-6) M to 10(-8) M concentrations. Two of the eight aptamers bound at higher concentrations to rhuPrP(C)90-231. Theoretical thermodynamic modeling of selected aptamer sequences identified several common motifs among the selected aptamers that could play a role in PrP binding. Binding affinity to rhuPrP(C)23-231 was both aptamer sequence and structure dependent. Further, selected aptamers bound to mammalian PrPs derived from brain of healthy sheep, calf, piglet, and deer, and to PrP(C) expressed in mouse neuroblastoma cells. None of the aptamers bound to proteinase K-digested scrapie-infected mouse neuroblastoma cells or untreated PrP-null cells, which further confirmed the PrP(C) specificity of the aptamers. In summary, we enriched and selected DNA aptamers that bind specifically to rhuPrP(C) and mammalian PrP(C) with varying affinities and can be applied to biological samples for PrP(C) enrichment and as diagnostic tools in double ligand assay systems.  相似文献   

11.
应用核酸适配子检测细胞因子的新方法—ELONA法   总被引:2,自引:0,他引:2  
以人肿瘤坏死因子(Human tumor necrosis factor,hTNF—α)特异性的核酸适配子为检测分子建立了酶联寡聚核苷酸吸附试验(Enzyme—linked Oligonucleotide assay,ELONA)方法,用于hTNF—α的检测。通过SELEX(Systematic Evolution of Ligands by Exponential Enrichment)方法从随机RNA库中筛选到与hTNF—α特异结合的RNA适配子。根据其序列,用体外转录方法合成生物素标记的RNA适配子,并对其进行了氨基修饰以增加其稳定性。以hTNF—α的单克隆抗体为捕获分子,生物素标记的hTNF—α特异性RNA适配子为检测分子建立了ELONA方法,并对这种检测方法的灵敏度、精密度和准确度等进行了分析。同时用ELONA和ELISA方法检测了正常人血清中的hTNF—α水平,并对检测结果进行比较。结果显示,ELONA方法的灵敏度为100pg/mL,具有较好的精密度和准确度。ELONA法的检测结果与ELISA法检测结果基本一致。该方法适用于血清、细胞培养上清等多种生物标本中各种细胞因子及其它蛋白的检测。  相似文献   

12.
胃癌是发病率及死亡率均较高的消化道恶性肿瘤之一,严重威胁人类的生命健康。血清肿瘤标志物的检测对提高早期胃癌的检出率,改善胃癌的治疗有重要的意义。核酸适配体以其灵敏度高、靶向性强等优势显示出了较强的临床适用性。本研究以双向热循环消减指数富集式配基系统进化(systematic evolution of ligands by exponential enrichment,SELEX)技术为支持,纳米(琼脂)磁珠材料为载体,胃癌血清及正常人血清为筛选靶标,结合高通量测序技术建立了快速高效的核酸适配体筛选方法。经过19轮双向筛选,获得高重复率的胃癌血清特异性核酸适配体序列10条及正常人血清特异性核酸适配体序列8条。将这些序列分别混合并制成检测试剂A、B,结合实时荧光定量PCR(quantitative real-time PCR,qPCR)技术,对100份临床血清样本进行特异性验证。通过比较分析,建立了快速高效的胃癌血清检测技术。结果显示,核酸适配体G AP1与N AP1的二级结构类似于抗体的“Y”型,且呈茎环状。检测试剂A、B对胃癌及正常人血清的检出率分别为92%和88%。表明本技术可以较准确地筛选得到高特异性和强亲和力的核酸适配体,体现了核酸适配体作为新型肿瘤标志物在临床检测及治疗的应用潜力。  相似文献   

13.

Background

The majority of patients with acute myelogenous leukemia (AML) still die of their disease. In order to improve survival rates in AML patients, new strategies are necessary to discover biomarkers for the detection and targeted therapy of AML. One of the advantages of the aptamer-based technology is the unique cell-based selection process, which allows us to efficiently select for cell-specific aptamers without knowing which target molecules are present on the cell surface.

Methods

The NB4 AML cell line was used as the target cell population for selecting single stranded DNA aptamers. After determining the affinity of selected aptamers to leukocytes, the aptamers were used to phenotype human bone marrow leukocytes and AML cells in clinical specimens. Then a biotin-labelled aptamer was used to enrich and identify its target surface protein.

Results

Three new aptamers were characterized from the selected aptamer pools (JH6, JH19, and K19). All of them can selectively recognize myeloid cells with Kd in the low nanomole range (2.77 to 12.37 nM). The target of the biotin-labelled K19 aptamer probe was identified as Siglec-5, a surface membrane protein in low abundance whose expression can serve as a biomarker of granulocytic maturation and be used to phenotype AML. More importantly, Siglec-5 expression can be used to detect low concentrations of AML cells in human bone marrow specimens, and functions as a potential target for leukemic therapy.

Conclusions

We have demonstrated a pipeline approach for developing single stranded DNA aptamer probes, phenotyping AML cells in clinical specimens, and then identifying the aptamer-recognized target protein. The developed aptamer probes and identified Siglec-5 protein may potentially be used for leukemic cell detection and therapy in our future clinical practice.  相似文献   

14.
Wang Y  He X  Wang K  Ni X  Su J  Chen Z 《Biosensors & bioelectronics》2011,26(8):3536-3541
A sensitive and specific electrochemical assay for detection of thrombin based on aptamer and ferrocenylhexanethiol loaded silica nanocapsules (FcSH/SiNCs) amplification is described. In the protocol, a double aptamer sandwich structure was formed in the presence of thrombin, in which an aptamer-labeled FcSH/SiNCs for electrochemical detection, and a streptavidin-coated magnetic bead immobilized aptamer for rapid and specific separation of target protein. After separated from the sample mixture under a magnetic field, the sandwich complex was treated with NaOH to release the loaded ferrocenylhexanethiol (FcSH) from the silica nanocapsules (SiNCs). Differential pulse voltammetry (DPV) was employed to detect the released FcSH, which was related to the concentration of the thrombin. The method took advantage of sandwich binding of two affinity aptamers for increased specificity, high payload of FcSH in SiNCs for signal amplification, magnetic beads for fast magnetic separation. The peak current of released FcSH had a good linear relationship with the thrombin concentration in the range of 0.1-5 nmol/L, and the detection limit of thrombin in the method was 0.06 nmol/L. The detection was also specific for thrombin without being affected by other proteins, such as immunoglobulin G, bovine serum albumin, lysozyme and human serum albumin. The method has been used to detect thrombin in human serum albumin with minimum background interference.  相似文献   

15.
We describe the characterization of a DNA aptamer that displays high affinity and specificity for the anthracyclines daunomycin and doxorubicin, both of which are frequently used in chemotherapy. Aptamers were isolated from a pool of random sequences using a semiautomated procedure for magnetic beads. All selected aptamers displayed high affinity for the target molecule daunomycin. One aptamer was further characterized and exhibited a dissociation constant (KD) of 20 nM. To examine the aptamer's binding properties and clarify its applicability for diagnostic assays, its performance under various buffer conditions was evaluated. The aptamer proved to be very robust and not dependent on the presence of specific ions. It also tolerated a wide pH range and immobilization via 5'-biotinylation. Furthermore, a competition assay for sensitive daunomycin detection was established. This not only allows the determination of the aptamer's specificity but also allows the quantification of as little as 8.4 microg/L daunomycin and doxorubicin.  相似文献   

16.
The potential of photoaptamers as proteomic probes was investigated. Photoaptamers are defined as aptamers that bear photocross-linking functionality, in this report, 5-bromo-2'-deoxyuridine. A key question regarding the use of photoaptamer probes is the specificity of the cross-linking reaction. The specificity of three photoaptamers was explored by comparing their reactions with target proteins and non-target proteins. The range of target/non-target specificity varies from 100- to >10(6)-fold with most values >10(4)-fold. The contributions of the initial binding step and the photocross-linking step were evaluated for each reaction. Photocross-linking never degraded specificity and significantly increased aptamer specificity in some cases. The application of photoaptamer technology to proteomics was investigated in microarray format. Immobilized anti-human immunodeficiency virus-gp120 aptamer was able to detect subnanomolar concentrations of target protein in 5% human serum. The levels of sensitivity and specificity displayed by photoaptamers, combined with other advantageous properties of aptamers, should facilitate development of protein chip technology.  相似文献   

17.
Novel electrochemical detection system for protein in sandwich manner using the aptamers was developed. Two different aptamers, which recognize different positions of thrombin, were chosen to construct sandwich type sensing system for protein, and one was immobilized onto the gold electrode for capturing thrombin onto the electrode and the other was used for detection. To obtain the signal, the aptamer for detection was labeled with pyrroquinoline quinone glucose dehydrogenase ((PQQ)GDH), and the electrical current, generated from glucose addition after the formation of the complex of thrombin, gold immobilized aptamer and the (PQQ)GDH labeled aptamer on the electrode, was measured. The increase of the electric current generated by (PQQ)GDH was observed in dependent manner of the concentration of thrombin added, and more than 10nM thrombin was detected selectively. The batch type protein sensing system was constructed using the two different aptamers sandwiching thrombin and it showed linear response to the increase of the thrombin concentration in the range of 40-100 nM.  相似文献   

18.
Min K  Cho M  Han SY  Shim YB  Ku J  Ban C 《Biosensors & bioelectronics》2008,23(12):1819-1824
Tuberculosis is the most frequent cause of infection-related death worldwide. We constructed a simple and direct electrochemical sensor to detect interferon (IFN)-gamma, a selective marker for tuberculosis pleurisy, using its RNA and DNA aptamers. IFN-gamma was detected by its 5'-thiol-modified aptamer probe immobilized on the gold electrode. Interaction between IFN-gamma and the aptamer was recorded using electrochemical impedance spectroscopy and quartz crystal microbalance (QCM) with high sensitivity. The RNA-aptamer-based sensor showed a low detection limit of 100 fM, and the DNA-aptamer-based sensor detected IFN-gamma to 1 pM in sodium phosphate buffer. With QCM analysis, the aptamer immobilized on the electrode and IFN-gamma bound to the aptamer probe was quantified. This QCM result shows that IFN-gamma exists in multimeric forms to interact with the aptamers, and the RNA aptamer prefers the high multimeric state of IFN-gamma. Such a preference may describe the low detection limit of the RNA aptamer shown by impedance analysis. In addition, IFN-gamma was detected to 10 pM by the DNA aptamer in fetal bovine serum, a mimicked biological system, which has similar components to pleural fluid.  相似文献   

19.

Background

Despite the enormous global burden of tuberculosis (TB), conventional approaches to diagnosis continue to rely on tests that have major drawbacks. The improvement of TB diagnostics relies, not only on good biomarkers, but also upon accurate detection methodologies. The 10-kDa culture filtrate protein (CFP-10) and the 6-kDa early secreted antigen target (ESAT-6) are potent T-cell antigens that are recognised by over 70% of TB patients. Aptamers, a novel sensitive and specific class of detection molecules, has hitherto, not been raised to these relatively TB-specific antigens.

Methods

DNA aptamers that bind to the CFP-10.ESAT-6 heterodimer were isolated. To assess their affinity and specificity to the heterodimer, aptamers were screened using an enzyme-linked oligonucleotide assay (ELONA). One suitable aptamer was evaluated by ELONA using sputum samples obtained from 20 TB patients and 48 control patients (those with latent TB infection, symptomatic non TB patients, and healthy laboratory volunteers). Culture positivity for Mycobacterium tuberculosis (Mtb) served as the reference standard. Accuracy and cut-points were evaluated using ROC curve analysis.

Results

Twenty-four out of the 66 aptamers that were isolated bound significantly (p<0.05) to the CFP-10.ESAT-6 heterodimer and six were further evaluated. Their dissociation constant (KD) values were in the nanomolar range. One aptamer, designated CSIR 2.11, was evaluated using sputum samples. CSIR 2.11 had sensitivity and specificity of 100% and 68.75% using Youden’s index and 35% and 95%, respectively, using a rule-in cut-point.

Conclusion

This preliminary proof-of-concept study suggests that a diagnosis of active TB using anti-CFP-10.ESAT-6 aptamers applied to human sputum samples is feasible.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号