首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A group of normal and congenitally goitrous Merino sheep were investigated to identify the metabolic defect present in the abnormal animals. 2. Protein-bound iodine concentrations of serum from goitrous animals (average 5·7μg./100ml.) were higher than normal (average 4·2μg./100ml.; P 0·001), but the hormonal iodine measured as butanol-extractable 131I was low in the serum of goitrous (average 40·3% of protein-bound 131I) compared with that of normal (84·2%; P 0·02) sheep. The non-hormonal iodine of the serum of goitrous sheep appeared to include iodotyrosines and iodinated protein. 3. Starch-gel-electrophoretic separations of sera from normal and goitrous sheep after 131I injection (100–500μc) showed no qualitative differences in the radioactivity of protein components. No significant differences in thyroxine-binding in vitro by serum proteins of normal and goitrous sheep were observed. 4. The clearance rates of 131I-labelled iodotyrosines (t½ 1·2–2·9hr.) and iodothyronines (t½ 33·5–47·4hr.) were similar in normal and goitrous sheep. 5. The concentration of circulating thyroid-stimulating hormone was significantly higher (P<0·01 in three sheep, P<0·05 in one sheep) in goitrous sheep. 6. The congenital goitre appears to be due to compensatory hypertrophy of the gland resulting from an inability to synthesize an adequate supply of thyroid hormone.  相似文献   

2.
1. Immunosorbents were prepared by coupling activated aminocellulose with the γ-globulin concentrates of antisera prepared against ovalbumin and human serum albumin. 2. The immunosorbents were low in solubility, but high in capacity for homologous antigens. 3. The high specificity of these immunosorbents was demonstrated by their use in fractionating various mixtures of fluorescent ovalbumin, 131I-labelled human serum albumin, lysozyme and ribonuclease.  相似文献   

3.
Human blood lymphocytes were coated with increasing amounts of human kappa chain (2–85μg/107 cells) through the linking reagent CrCl3. These cells were then exposed to small unilamellar liposomes composed of egg phosphatidylcholine, cholesterol and phosphatidic acid (molar proportions 7:7:1) containing carboxyfluorescein and/or 111In-labelled bleomycin and bearing 131I-labelled affinity chromatography-purified or non-purified anti-(kappa-chain) immunoglobulin G (IgG) [see the preceding paper, Gregoriadis, Meehan & Mah (1981) Biochem. J. 200, 203–210]. In some experiments liposomes contained [14C]phosphatidylcholine. (1) Lymphocytes (107) coated with 2–85μg of kappa chain and exposed to liposomes devoid of IgG or bearing non-purified anti-(kappa chain) IgG bound only a small proportion of the liposomal markers. Even with liposomes bearing the purified anti-(kappa chain) IgG, uptake of the labels improved only slightly for cells coated with up to 10μg of kappa chain. However, with higher concentrations of the antigen on the cell surface, binding was improved considerably to reach values of 31% (111In-labelled bleomycin) and 43% (131I-labelled IgG) of added liposomes for cells coated with 85μg of kappa chain. (2) Lymphocytes coated with kappa chain were exposed to liposomes bearing increasing amounts (0–180μg/0.9mg of egg phosphatidylcholine) of purified anti-(kappa chain) IgG. It was found that under the present conditions, binding of all three markers (111In-labelled bleomycin, 131I-labelled IgG and [14C]phosphatidylcholine) was directly proportional to the concentration of IgG on the liposomal surface. However, uptake values remained unchanged above 90μg of IgG. (3) Antibody-mediated uptake of liposomes by cells coated with the corresponding antigen without loss of their metabolic activities may provide a method of efficient targeting.  相似文献   

4.
1. γ-Globulin concentrates of antisera prepared against ovalbumin and human serum albumin were thiolated and cross-linked to form insoluble polymers. 2. These immunosorbents were of low solubility and of high capacity for homologous antigen. 3. The high specificity of these immunosorbents was demonstrated by fractionation of various binary mixtures of fluorescent ovalbumin, 131I-labelled human serum albumin, lysozyme and ribonuclease.  相似文献   

5.
β-Catenin is essential for the function of cadherins, a family of Ca2+-dependent cell–cell adhesion molecules, by linking them to α-catenin and the actin cytoskeleton. β-Catenin also binds to adenomatous polyposis coli (APC) protein, a cytosolic protein that is the product of a tumor suppressor gene mutated in colorectal adenomas. We have expressed mutant β-catenins in MDCK epithelial cells to gain insights into the regulation of β-catenin distribution between cadherin and APC protein complexes and the functions of these complexes. Full-length β-catenin, β-catenin mutant proteins with NH2-terminal deletions before (ΔN90) or after (ΔN131, ΔN151) the α-catenin binding site, or a mutant β-catenin with a COOH-terminal deletion (ΔC) were expressed in MDCK cells under the control of the tetracycline-repressible transactivator. All β-catenin mutant proteins form complexes and colocalize with E-cadherin at cell–cell contacts; ΔN90, but neither ΔN131 nor ΔN151, bind α-catenin. However, β-catenin mutant proteins containing NH2-terminal deletions also colocalize prominently with APC protein in clusters at the tips of plasma membrane protrusions; in contrast, full-length and COOH-terminal– deleted β-catenin poorly colocalize with APC protein. NH2-terminal deletions result in increased stability of β-catenin bound to APC protein and E-cadherin, compared with full-length β-catenin. At low density, MDCK cells expressing NH2-terminal–deleted β-catenin mutants are dispersed, more fibroblastic in morphology, and less efficient in forming colonies than parental MDCK cells. These results show that the NH2 terminus, but not the COOH terminus of β-catenin, regulates the dynamics of β-catenin binding to APC protein and E-cadherin. Changes in β-catenin binding to cadherin or APC protein, and the ensuing effects on cell morphology and adhesion, are independent of β-catenin binding to α-catenin. These results demonstrate that regulation of β-catenin binding to E-cadherin and APC protein is important in controlling epithelial cell adhesion.  相似文献   

6.
Amylase-binding protein A (AbpA) of a number of oral streptococci is essential for the colonization of the dental pellicle. We have determined the solution structure of residues 24–195 of AbpA of Streptococcus gordonii and show a well-defined core of five helices in the region of 45–115 and 135–145. 13Cα/β chemical shift and heteronuclear 15N-{1H} NOE data are consistent with this fold and that the remainder of the protein is unstructured. The structure will inform future molecular experiments in defining the mechanism of human salivary α-amylase binding and biofilm formation by streptococci.  相似文献   

7.
DNA replication of phage-plasmid P4 in its host Escherichia coli depends on its replication protein α. In the plasmid state, P4 copy number is controlled by the regulator protein Cnr (copy number regulation). Mutations in α (αcr) that prevent regulation by Cnr cause P4 over-replication and cell death. Using the two-hybrid system in Saccharomyces cerevisiae and a system based on λ immunity in E.coli for in vivo detection of protein–protein interactions, we found that: (i) α protein interacts with Cnr, whereas αcr proteins do not; (ii) both α–α and αcr–αcr interactions occur and the interaction domain is located within the C-terminal of α; (iii) Cnr–Cnr interaction also occurs. Using an in vivo competition assay, we found that Cnr interferes with both α–α and αcr–αcr dimerization. Our data suggest that Cnr and α interact in at least two ways, which may have different functional roles in P4 replication control.  相似文献   

8.
The α1 and β1a subunits of the skeletal muscle calcium channel, Cav1.1, as well as the Ca2+ release channel, ryanodine receptor (RyR1), are essential for excitation-contraction coupling. RyR1 channel activity is modulated by the β1a subunit and this effect can be mimicked by a peptide (β1a490–524) corresponding to the 35-residue C-terminal tail of the β1a subunit. Protein-protein interaction assays confirmed a high-affinity interaction between the C-terminal tail of the β1a and RyR1. Based on previous results using overlapping peptides tested on isolated RyR1, we hypothesized that a 19-amino-acid residue peptide (β1a490–508) is sufficient to reproduce activating effects of β1a490–524. Here we examined the effects of β1a490–508 on Ca2+ release and Ca2+ currents in adult skeletal muscle fibers subjected to voltage-clamp and on RyR1 channel activity after incorporating sarcoplasmic reticulum vesicles into lipid bilayers. β1a490–508 (25 nM) increased the peak Ca2+ release flux by 49% in muscle fibers. Considerably fewer activating effects were observed using 6.25, 100, and 400 nM of β1a490–508 in fibers. β1a490–508 also increased RyR1 channel activity in bilayers and Cav1.1 currents in fibers. A scrambled form of β1a490–508 peptide was used as negative control and produced negligible effects on Ca2+ release flux and RyR1 activity. Our results show that the β1a490–508 peptide contains molecular components sufficient to modulate excitation-contraction coupling in adult muscle fibers.  相似文献   

9.
In the ER (endoplasmic reticulum) of human cells, disulfide bonds are predominantly generated by the two isoforms of Ero1 (ER oxidoreductin-1): Ero1α and Ero1β. The activity of Ero1α is tightly regulated through the formation of intramolecular disulfide bonds to help ensure balanced ER redox conditions. Ero1β is less tightly regulated, but the molecular details underlying control of activity are not as well characterized as for Ero1α. Ero1β contains an additional cysteine residue (Cys262), which has been suggested to engage in an isoform-specific regulatory disulfide bond with Cys100. However, we show that the two regulatory disulfide bonds in Ero1α are likely conserved in Ero1β (Cys90–Cys130 and Cys95–Cys100). Molecular modelling of the Ero1β structure predicted that the side chain of Cys262 is completely buried. Indeed, we found this cysteine to be reduced and partially protected from alkylation in the ER of living cells. Furthermore, mutation of Cys100–but not of Cys262–rendered Ero1β hyperactive in cells, as did mutation of Cys130. Ero1β hyperactivity induced the UPR (unfolded protein response) and resulted in oxidative perturbation of the ER redox state. We propose that features other than a distinct pattern of regulatory disulfide bonds determine the loose redox regulation of Ero1β relative to Ero1α.  相似文献   

10.
11.
α–Epithelial catenin (E-catenin) is an important cell–cell adhesion protein. In this study, we show that α–E-catenin also regulates intracellular traffic by binding to the dynactin complex component dynamitin. Dynactin-mediated organelle trafficking is increased in α–E-catenin−/− keratinocytes, an effect that is reversed by expression of exogenous α–E-catenin. Disruption of adherens junctions in low-calcium media does not affect dynactin-mediated traffic, indicating that α–E-catenin regulates traffic independently from its function in cell–cell adhesion. Although neither the integrity of dynactin–dynein complexes nor their association with vesicles is affected by α–E-catenin, α–E-catenin is necessary for the attenuation of microtubule-dependent trafficking by the actin cytoskeleton. Because the actin-binding domain of α–E-catenin is necessary for this regulation, we hypothesize that α–E-catenin functions as a dynamic link between the dynactin complex and actin and, thus, integrates the microtubule and actin cytoskeleton during intracellular trafficking.  相似文献   

12.
Although type IV collagen is heavily glycosylated, the influence of this post-translational modification on integrin binding has not been investigated. In the present study, galactosylated and nongalactosylated triple-helical peptides have been constructed containing the α1(IV)382–393 and α1(IV)531–543 sequences, which are binding sites for the α2β1 and α3β1 integrins, respectively. All peptides had triple-helical stabilities of 37 °C or greater. The galactosylation of Hyl393 in α1(IV)382–393 and Hyl540 and Hyl543 in α1(IV)531–543 had a dose-dependent influence on melanoma cell adhesion that was much more pronounced in the case of α3β1 integrin binding. Molecular modeling indicated that galactosylation occurred on the periphery of α2β1 integrin interaction with α1(IV)382–393 but right in the middle of α3β1 integrin interaction with α1(IV)531–543. The possibility of extracellular deglycosylation of type IV collagen was investigated, but no β-galactosidase-like activity capable of collagen modification was found. Thus, glycosylation of collagen can modulate integrin binding, and levels of glycosylation could be altered by reduction in expression of glycosylation enzymes but most likely not by extracellular deglycosylation activity.  相似文献   

13.
Solid-state NMR measurements have been reported for four peptides derived from β-amyloid peptide Aβ(1–42): Aβ(1–40), Aβ(10–35), Aβ(16–22), and Aβ(34–42). Of these, the first two are predicted to be amphiphilic and were reported to form parallel β-sheets, whereas the latter two peptides appear nonamphiphilic and adopt an antiparallel β-sheet organization. These results suggest that amphiphilicity may be significant in determining fibril structure. Here, we demonstrate that acylation of Aβ(16–22) with octanoic acid increases its amphiphilicity and changes the organization of fibrillar β-sheet from antiparallel to parallel. Electron microscopy, Congo Red binding, and one-dimensional 13C NMR measurements demonstrate that octanoyl-Aβ(16–22) forms typical amyloid fibrils. Based on the stability of monolayers at the air-water interface, octanoyl-Aβ(16–22) is more amphiphilic than Aβ(16–22). Measurements of 13C-13C and 15N-13C nuclear magnetic dipole-dipole couplings in isotopically labeled fibril samples, using the constant-time finite-pulse radiofrequency-driven recoupling (fpRFDR-CT) and rotational echo double resonance (REDOR) solid-state NMR techniques, demonstrate that octanoyl-Aβ(16–22) fibrils are composed of parallel β-sheets, whereas Aβ(16–22) fibrils are composed of antiparallel β-sheets. These data demonstrate that amphiphilicity is critical in determining the structural organization of β-sheets in the amyloid fibril. This work also shows that all amyloid fibrils do not share a common supramolecular structure, and suggests a method for controlling the structure of amyloid fibrils.  相似文献   

14.
Infant gut-associated bifidobacteria possess species-specific enzymatic sets to assimilate human milk oligosaccharides, and lacto-N-biosidase (LNBase) is a key enzyme that degrades lacto-N-tetraose (Galβ1–3GlcNAcβ1–3Galβ1–4Glc), the main component of human milk oligosaccharides, to lacto-N-biose I (Galβ1–3GlcNAc) and lactose. We have previously identified LNBase activity in Bifidobacterium bifidum and some strains of Bifidobacterium longum subsp. longum (B. longum). Subsequently, we isolated a glycoside hydrolase family 20 (GH20) LNBase from B. bifidum; however, the genome of the LNBase+ strain of B. longum contains no GH20 LNBase homolog. Here, we reveal that locus tags BLLJ_1505 and BLLJ_1506 constitute LNBase from B. longum JCM1217. The gene products, designated LnbX and LnbY, respectively, showed no sequence similarity to previously characterized proteins. The purified enzyme, which consisted of LnbX only, hydrolyzed via a retaining mechanism the GlcNAcβ1–3Gal linkage in lacto-N-tetraose, lacto-N-fucopentaose I (Fucα1–2Galβ1–3GlcNAcβ1–3Galβ1–4Glc), and sialyllacto-N-tetraose a (Neu5Acα2–3Galβ1–3GlcNAcβ1–3Galβ1–4Gal); the latter two are not hydrolyzed by GH20 LNBase. Among the chromogenic substrates examined, the enzyme acted on p-nitrophenyl (pNP)-β-lacto-N-bioside I (Galβ1–3GlcNAcβ-pNP) and GalNAcβ1–3GlcNAcβ-pNP. GalNAcβ1–3GlcNAcβ linkage has been found in O-mannosyl glycans of α-dystroglycan. Therefore, the enzyme may serve as a new tool for examining glycan structures. In vitro refolding experiments revealed that LnbY and metal ions (Ca2+ and Mg2+) are required for proper folding of LnbX. The LnbX and LnbY homologs have been found only in B. bifidum, B. longum, and a few gut microbes, suggesting that the proteins have evolved in specialized niches.  相似文献   

15.
α-Synuclein is an intrinsically disordered protein of 140 residues that switches to an α-helical conformation upon binding phospholipid membranes. We characterize its residue-specific backbone structure in free solution with a novel maximum entropy procedure that integrates an extensive set of NMR data. These data include intraresidue and sequential HN–Hα and HN–HN NOEs, values for 3JHNHα, 1JHαCα, 2JCαN, and 1JCαN, as well as chemical shifts of 15N, 13Cα, and 13C′ nuclei, which are sensitive to backbone torsion angles. Distributions of these torsion angles were identified that yield best agreement to the experimental data, while using an entropy term to minimize the deviation from statistical distributions seen in a large protein coil library. Results indicate that although at the individual residue level considerable deviations from the coil library distribution are seen, on average the fitted distributions agree fairly well with this library, yielding a moderate population (20–30%) of the PPII region and a somewhat higher population of the potentially aggregation-prone β region (20–40%) than seen in the database. A generally lower population of the αR region (10–20%) is found. Analysis of 1H–1H NOE data required consideration of the considerable backbone diffusion anisotropy of a disordered protein.  相似文献   

16.

Objective

The α7 nicotinic acetylcholine receptors (nAChRs) play a vital role in the pathophysiology of neuropsychiatric diseases such as Alzheimer’s disease and depression. However, there is currently no suitable positron emission tomography (PET) or Single-Photon Emission Computed Tomography (SPECT) radioligands for imaging α7 nAChRs in brain. Here our aim is to radiosynthesize a novel SPECT radioligand 131I-CHIBA-1001 for whole body biodistribution study and in vivo imaging of α7 nAChRs in brain.

Method

131I-CHIBA-1001 was radiosynthesized by chloramine-T method. Different conditions of reaction time and temperature were tested to get a better radiolabeling yield. Radiolabeling yield and radiochemical purities of 131I-CHIBA-1001 were analyzed by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) system. Whole body biodistribution study was performed at different time points post injection of 131I-CHIBA-1001 in KM mice. Monkey subject was used for in vivo SPECT imaging in brain.

Result

The radiolabeling yield of 131I-CHIBA-1001 reached 96% within 1.5∼2.0 h at 90∼95°C. The radiochemical purity reached more than 99% after HPLC purification. 131I-CHIBA-1001 was highly stable in saline and fresh human serum in room temperature and 37°C separately. The biodistribution data of brain at 15, 30, and 60 min were 11.05±1.04%ID/g, 8.8±0.04%ID/g and 6.28±1.13%ID/g, respectively. In experimental SPECT imaging, the distribution of radioactivity in the brain regions was paralleled with the distribution of α7 nAChRs in the monkey brain. Moreover, in the blocking SPECT imaging study, the selective α7 nAChR agonist SSR180711 blocked the radioactive uptake in the brain successfully.

Conclusion

The CHIBA-1001 can be successfully radiolabeled with 131I using the chloramine-T method. 131I-CHIBA-1001 can successfully accumulate in the monkey brain and image the α7 acetylcholine receptors. 131I-CHIBA-1001 can be a candidate for imagingα7 acetylcholine receptors, which will be of great value for the diagnosis and treatment of mental diseases.  相似文献   

17.
Using homonuclear 1H NOESY spectra, with chemical shifts, 3JHNHα scalar couplings, residual dipolar couplings, and 1H-15N NOEs, we have optimized and validated the conformational ensembles of the amyloid-β 1–40 (Aβ40) and amyloid-β 1–42 (Aβ42) peptides generated by molecular dynamics simulations. We find that both peptides have a diverse set of secondary structure elements including turns, helices, and antiparallel and parallel β-strands. The most significant difference in the structural ensembles of the two peptides is the type of β-hairpins and β-strands they populate. We find that Aβ42 forms a major antiparallel β-hairpin involving the central hydrophobic cluster residues (16–21) with residues 29–36, compatible with known amyloid fibril forming regions, whereas Aβ40 forms an alternative but less populated antiparallel β-hairpin between the central hydrophobic cluster and residues 9–13, that sometimes forms a β-sheet by association with residues 35–37. Furthermore, we show that the two additional C-terminal residues of Aβ42, in particular Ile-41, directly control the differences in the β-strand content found between the Aβ40 and Aβ42 structural ensembles. Integrating the experimental and theoretical evidence accumulated over the last decade, it is now possible to present monomeric structural ensembles of Aβ40 and Aβ42 consistent with available information that produce a plausible molecular basis for why Aβ42 exhibits greater fibrillization rates than Aβ40.  相似文献   

18.
Background:alpha-Thalassemia is caused primarily by deletions of one to two alpha-globin genes and is characterized by absent or deficient production of alpha-globin protein. The South-East Asia (SEA) deletion, 3.7-kb and 4.2-kb deletions are the most common causes. The present study aimed to observe the molecular characteristics of this common alpha-Thalassemia deletions and analyse its haematological parameter.Methods:Blood samples from 173 healthy volunteers from thalassemia carrier screening in Yogyakarta Special Region were used. Haematological parameters were analysed and used to predict the carrier subjects. Genotype of suspected carriers was determined using multiplex gap-polymerase chain reaction and its haematological parameters were compared. The boundary site of each deletion was determined by analysing the DNA sequences.Results:Seventeen (9.8%) of the volunteers were confirmed to have alpha-Thalassemia trait. Of these, four genotypes were identified namely –α3.7/αα (58.8%), –α4.2/αα (5.9%), –α3.7/–α4.2 (5.9%) and – –SEA/αα (29.4%). The 5′ and 3′ breakpoints of SEA deletion were located at nt165396 and nt184700 of chromosome 16, respectively. The breakpoint regions of 3.7-kb deletion were 176-bp long, whereas for 4.2-kb deletion were 321-bp long. The haematological comparison between normal and those with alpha-Thalassemia trait genotype indicated a significant difference in mean corpuscular volume (MCV) (p< 0.001) and mean corpuscular haemoglobin (MCH) (p< 0.001). As for identifying the number of defective genes, MCH parameter was more reliable (p= 0.003).Conclusion:The resultant molecular and haematological features provide insight and direction for future thalassemia screening program in the region.Key Words: Allelic Imbalance, Alpha-Thalassemia, Indonesia, Multiplex Polymerase Chain Reaction, Sequence Deletion  相似文献   

19.
Alzheimer disease coincides with the formation of extracellular amyloid plaques composed of the amyloid-β (Aβ) peptide. Aβ is typically 40 residues long (Aβ(1–40)) but can have variable C and N termini. Naturally occurring N-terminally truncated Aβ(11–40/42) is found in the cerebrospinal fluid and has a similar abundance to Aβ(1–42), constituting one-fifth of the plaque load. Based on its specific N-terminal sequence we hypothesized that truncated Aβ(11–40/42) would have an elevated affinity for Cu2+. Various spectroscopic techniques, complemented with transmission electron microscopy, were used to determine the properties of the Cu2+-Aβ(11–40/42) interaction and how Cu2+ influences amyloid fiber formation. We show that Cu2+-Aβ(11–40) forms a tetragonal complex with a 34 ± 5 fm dissociation constant at pH 7.4. This affinity is 3 orders of magnitude tighter than Cu2+ binding to Aβ(1–40/42) and more than an order of magnitude tighter than that of serum albumin, the extracellular Cu2+ transport protein. Furthermore, Aβ(11–40/42) forms fibers twice as fast as Aβ(1–40) with a very different morphology, forming bundles of very short amyloid rods. Substoichiometric Cu2+ drastically perturbs Aβ(11–40/42) assembly, stabilizing much longer fibers. The very tight fm affinity of Cu2+ for Aβ(11–40/42) explains the high levels of Cu2+ observed in Alzheimer disease plaques.  相似文献   

20.
How inflammatory responses are mechanistically modulated by nicotinic acetylcholine receptors (nAChR), especially by receptors composed of alpha7 (α7) subunits, is poorly defined. This includes a precise definition of cells that express α7 and how these impact on innate inflammatory responses. To this aim we used mice generated through homologous recombination that express an Ires-Cre-recombinase bi-cistronic extension of the endogenous α7 gene that when crossed with a reporter mouse expressing Rosa26-LoxP (yellow fluorescent protein (YFP)) marks in the offspring those cells of the α7 cell lineage (α7lin+). In the adult, on average 20–25 percent of the total CD45+ myeloid and lymphoid cells of the bone marrow (BM), blood, spleen, lymph nodes, and Peyers patches are α7lin+, although variability between litter mates in this value is observed. This hematopoietic α7lin+ subpopulation is also found in Sca1+cKit+ BM cells suggesting the α7 lineage is established early during hematopoiesis and the ratio remains stable in the individual thereafter as measured for at least 18 months. Both α7lin+ and α7lin– BM cells can reconstitute the immune system of naïve irradiated recipient mice and the α7lin+:α7lin– beginning ratio is stable in the recipient after reconstitution. Functionally the α7lin+:α7lin– lineages differ in response to LPS challenge. Most notable is the response to LPS as demonstrated by an enhanced production of IL-12/23(p40) by the α7lin+ cells. These studies demonstrate that α7lin+ identifies a novel subpopulation of bone marrow cells that include hematopoietic progenitor cells that can re-populate an animal’s inflammatory/immune system. These findings suggest that α7 exhibits a pleiotropic role in the hematopoietic system that includes both the direct modulation of pro-inflammatory cell composition and later in the adult the role of modulating pro-inflammatory responses that would impact upon an individual’s lifelong response to inflammation and infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号