首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wounding of endothelial cells is associated with altered direct intercellular communication. To determine whether gap junctional communication participates to the wound repair process, we have compared connexin (Cx) expression, cell-to-cell coupling and kinetics of wound repair in monolayer cultures of PymT-transformed mouse endothelial cells (clone bEnd.3) and in bEnd.3 cells expressing different dominant negative Cx inhibitors. In parental bEnd.3 cells, mechanical wounding increased expression of Cx43 and decreased expression of Cx37 at the site of injury, whereas Cx40 expression was unaffected. These wound-induced changes in Cx expression were associated with functional changes in cell-to-cell coupling, as assessed with different fluorescent tracers. Stable transfection with cDNAs encoding for the chimeric connexin 3243H7 or the fusion protein Cx43-betaGal resulted in perturbed gap junctional communication between bEnd.3 cells under both basal and wounded conditions. The time required for complete repair of a defined wound within a confluent monolayer was increased by ~50% in cells expressing the dominant negative Cx inhibitors, whereas other cell properties, such as proliferation rate, migration of single cells, cyst formation and extracellular proteolytic activity, were unaltered. These findings demonstrate that proper Cx expression is required for coordinated migration during repair of an endothelial wound.  相似文献   

2.
Gap junctional channels between cells provide a pathway for exchange of regulatory ions and small molecules. We previously demonstrated that expression of connexins and cell-to-cell communication parallel osteoblastic differentiation and that nonspecific pharmacological inhibitors of gap junctional communication inhibit alkaline phosphatase activity. In this study, we stably transfected connexin (Cx)43 antisense cDNA into the immortalized human fetal osteoblastic cell line hFOB 1.19 (hFOB/Cx43). hFOB/Cx43 cells express lower levels of Cx43 protein and mRNA and display a 50% decrease in gap junctional intercellular communication relative to control [hFOB/plasmid vector control (pvc)]. This suggests that other connexins, such as Cx45, which is expressed to a similar degree in hFOB/Cx43 cells and hFOB/pvc cells, contribute to cell-to-cell communication in hFOB 1.19 cells. We observed almost total inhibition of alkaline phosphatase activity in hFOB/Cx43 cells despite only a 50% decrease in cell-to-cell communication. This suggests the intriguing possibility that Cx43 expression per se, independent of cell-to-cell communication, influences alkaline phosphatase activity and perhaps bone cell differentiation. Quantitative real-time RT-PCR revealed that mRNA levels for osteocalcin and core binding factor 1 (Cbfa1) increased as a function of time in hFOB/pvc but were inhibited in hFOB/Cx43. Osteopontin mRNA levels were increased in hFOB/Cx43 relative to hFOB/pvc and decreased as a function of time in both hFOB/Cx43 and hFOB/pvc. Transfection with Cx43 antisense did not affect expression of type I collagen in hFOB 1.19 cells. These results suggest that gap junctional intercellular communication and expression of Cx43 contribute to alkaline phosphatase activity, as well as osteocalcin, osteopontin, and Cbfa1 expression in osteoblastic cells. gap junction communication; alkaline phosphatase activity; osteopontin; osteocalcin; hFOB 1.19  相似文献   

3.
The functional state of gap junctional channels and the phosphorylation status of Connexine43 (Cx43), the major gap junctional protein in rat heart, were evaluated in primary cultures of neonatal rat cardiomyocytes. H7, able to inhibit a range of serine/threonine protein kinases, progressively reduced gap junctional conductance to approximately 13% of its initial value within 10 min except when protein phosphatase inhibitors were also present. The dephosphorylating agent 2,3-Butanedione monoxime (BDM) produced both a quick and reversible interruption of cell-to-cell communication as well as a parallel slow inhibition of junctional currents. The introduction of a non-hydrolysable ATP analogue (ATPgammaS) in the cytosol delayed the second component, suggesting that it was the consequence of protein dephosphorylation. Western blot analysis reveals 2 forms of Cx43 with different electrophoretic mobilities which correspond to its known phosphorylated and dephosphorylated forms. After exposure of the cells to H7 (1 mmol/l, 1h) or BDM (15 mmol/l, 15 min), no modification in the level of Cx43 phosphorylation was observed. The lack of direct correlation between the inhibition of cell-to-cell communication and changes in the phosphorylation status of Cx43 suggest that the functional state of junctional channels might rather be determined by regulatory proteins associated to Cx43.  相似文献   

4.
Cell-to-cell communication is achieved by passage of small molecules through gap junction membrane channels. The expression of the transforming gene from Rous sarcoma virus, v-src, induces a rapid and dramatic reduction in cell-to-cell communication in cultured cells. To determine whether connexin43, a major gap junction protein expressed in fibroblasts, is a target for the v-src protein tyrosine kinase activity, we examined the phosphorylation state of connexin43 in cells expressing variants of src. Using an antipeptide serum that recognizes connexin43, we demonstrate that this protein is phosphorylated on serine and tyrosine residues in avian and mammalian cells expressing activated src proteins. Connexin43 from control cells and cells expressing nonactivated variants of the src protein was phosphorylated solely on serine residues. In lysates from v-src-transformed cells, all phosphorylated connexin43 molecules were cleared from the lysate by sequential immunoprecipitations using the phosphotyrosine antibodies, suggesting that each molecule of phosphorylated connexin43 contains both phosphoserine and phosphotyrosine. We have also examined junctional permeability in cells expressing src variants and find that loss of cell-to-cell communication correlates with tyrosine phosphorylation of connexin43.  相似文献   

5.
Gap junctions contain membrane channels that mediate the cell-to-cell movement of ions, metabolites and cell signaling molecules. As gap junctions are comprised of a hexameric array of connexin polypeptides, the expression of a mutant connexin polypeptide may exert a dominant negative effect on gap junctional communication. To examine this possibility, we constructed a connexin 43 (Cx43)/beta-galactosidase (beta-gal) expression vector in which the bacterial beta-gal protein is fused in frame to the carboxy terminus of Cx43. This vector was transfected into NIH3T3 cells, a cell line which is well coupled via gap junctions and expresses high levels of Cx43. Transfectant clones were shown to express the fusion protein by northern and western analysis. X-Gal staining further revealed that all of the fusion protein containing cells also expressed beta-gal enzymatic activity. Double immunostaining with a beta-gal and Cx43 antibody demonstrated that the fusion protein is immunolocalized to the perinuclear region of the cytoplasm and also as punctate spots at regions of cell-cell contact. This pattern is similar to that of Cx43 in the parental 3T3 cells, except that in the fusion protein expressing cells, Cx43 expression was reduced at regions of cell-cell contact. Examination of gap junctional communication (GJC) with dye injection studies further showed that dye coupling was inhibited in the fusion protein expressing cells, with the largest reduction in coupling found in a clone exhibiting little Cx43 localization at regions of cell-cell contact. When the fusion protein expression vector was transfected into the communication poor C6 cell line, abundant fusion protein expression was observed, but unlike the transfected NIH3T3 cells, no fusion protein was detected at the cell surface. Nevertheless, dye coupling was inhibited in these C6 cells. Based on these observations, we propose that the fusion protein may inhibit GJC by sequestering the Cx43 protein intracellularly. Overall, these results demonstrate that the Cx43/beta-gal fusion protein can exert a dominant negative effect on GJC in two different cell types, and suggests that it may serve as a useful approach for probing the biological function of gap junctions.  相似文献   

6.
The regulation of the cell-to-cell pathway formed by gap junctions seems to involve the interaction of the junctional channels with either calcium or hydrogen ions, as well as protein phosphorylation and calmodulin. These mechanisms of junctional regulation have been considered to act independently on specific sites of the gap junction protein; however, the possibility that they may be interrelated has not been adequately explored mainly due to the difficulties involved in simultaneous measurement of intracellular cations and protein phosphorylation. To further understanding of mechanisms regulating gap junctions, we have internally perfused coupled lateral axons from crayfish with solutions containing different calcium and hydrogen concentrations under conditions favoring phosphorylation, while monitoring the junctional conductance. We found that calcium ions regulate cell communication probably through a direct interaction with the channel protein. Phosphorylation and low pH do not alter junctional conductance themselves, but appear only to modulate the effects of calcium, possibly by altering the affinity of the channel for calcium. We propose that a combination of free intracellular calcium and protein phosphorylation form an important physiological mechanism regulating intercellular communication.  相似文献   

7.
Direct cell-to-cell transfer of ions and small signaling molecules via gap junctions plays a key role in vessel wall homeostasis. Vascular endothelial gap junctional channels are formed by the connexin (Cx) proteins Cx37, Cx40, and Cx43. The mechanisms regulating connexin expression and assembly into functional channels have not been fully identified. We investigated the dynamic regulation of endothelial gap junctional intercellular communication (GJIC) by fluid flow and the participation of each vascular connexin in functional human endothelial gap junctions in vitro. Human aortic endothelial cells (HAEC) were exposed for 5, 16, and 24 h to physiological flows in a parallel-plate flow chamber. Connexin protein expression and localization were evaluated by immunocytochemistry, and functional GJIC was evaluated by dye injection. Connexin-mimetic peptide inhibitors were used to assess the specific connexin composition of functional channels. HAEC monolayers in culture exhibited baseline functional communication at a striking low level despite abundant expression of Cx43 and Cx40 localized at cell-to-cell appositions. Upon exposure to flow, GJIC by dye spread demonstrated a significant time-dependent increase from baseline levels, reaching 7.5-fold in 24 h. Inhibition studies revealed that this response was mediated primarily by Cx40, with lesser contributions of the other two vascular connexins assembled into functional homotypic and/or heterotypic channels. This is the first study to demonstrate that flow simultaneously and differentially regulates expression of the Cx37, Cx40, and Cx43 proteins and their involvement in the augmentation of intercellular communication by dye transfer in human endothelial cells in vitro.  相似文献   

8.
9.
10.
Neuronal differentiation is accompanied by NSP-C expression   总被引:5,自引:0,他引:5  
Neuroendocrine-specific protein (NSP) reticulons are expressed in neural and neuroendocrine tissues and cell cultures derived therefrom, while most other cell types lack NSP-reticulons. Three major subtypes have been identified so far, designated NSP-A, NSP-B, and NSP-C. We have investigated the correlation between the degree of neuronal differentiation, determined by morphological and biochemical criteria, and NSP-reticulon subtype expression. For this purpose, several human neuroblastoma cell lines, exhibiting different degrees of neuronal differentiation, were examined immuno(cyto) chemically. It became obvious that the expression of NSP-C, as detected by immunofluorescence microscopy and Western blotting, is most prominent in cell lines with a high degree of neuronal differentiation, such as LA-N-5. Such highly differentiated cells also express other neural and neuroendocrine markers, such as neural cell adhesion molecule (NCAM), neurofilament proteins, synaptophysin, and chromogranin. NSP-A was observed in all cell lines to a different extent. However, no clear correlation was observed with the degree of neuronal differentiation as defined by other neuronal and neuroendocrine markers or morphology. NSP-B could not be detected. The induction of neuronal differentiation with nerve growth factor, dbcAMP, and retinoic acid in the rat pheochromocytoma cell line PC12 and the human teratocarcinoma cell line hNT2, respectively, induced the expression of NSP-A and NSP-C in these cell lines parallel to the induction of neurofilament protein expression. It is concluded that NSP-C expression, in particular, is strongly correlated with neuronal differentiation.  相似文献   

11.
We previously described cultures of chick embryo lens cells which displayed a marked degree of differentiation. In this report, the junctions found between the lens fiber-like cells in the differentiated "lentoids" are characterized in several ways. Thin-section methods with electron microscopy first demonstrated that numerous, large junctions between lentoid cells accompanied the other differentiated features of these cells. Freeze-fracture techniques, including quantitative analysis, then revealed that (a) junctional particles were loosely arranged as is typical of fiber cells, (b) the population of individual junctional areas in culture was indistinguishable from that found in 10- to 12-day chick embryo lenses, and (c) apparent junction formation occurred during the development of the lens cells, with lacy arrays of particles being associated with fiber-like junctions. In addition, gap junctions with hexagonally packed particles, typical of lens epithelial cells, largely disappeared during the course of differentiation. Injection of tracer dyes into lentoid cells resulted in rapid intercellular movement of dye, consistent with functional cell-to-cell channels connecting lentoid cells. During the development of the lens cells in culture, as junction formation occurred, an increase of approximately eight-fold in MP28 protein was observed within the cells. These combined results indicate that (a) extensive lens fiber junctions and functional cell-to-cell channels are found between differentiated lentoid lentoid cells in vitro, (b) lens fiber junctions appear to form during the course of lens cell differentiation in culture, (c) a significant increase occurs in the putative junctional protein before the cultures are highly developed, (d) the increased levels of MP28 and junction formation may be required for the full expression of the differentiated state in the lens fiber cell, and (e) this culture system should prove to be valuable for additional experiments on lens junctions and for other studies requiring the development of lens fiber cells in vitro.  相似文献   

12.
NCAM in the differentiation of embryonic lens tissue   总被引:1,自引:0,他引:1  
The role of the neural cell adhesion molecule (NCAM)2 in ocular lens differentiation was investigated in chicken embryos. Changes in expression of NCAM were documented by immunohistology of frozen sections. This analysis revealed that NCAM diminished during lens fiber differentiation, in contrast to the gap junction-associated protein MP26 which became more abundant. The form of NCAM expressed was determined by Western blot analysis of proteins extracted from the different regions of the Embryonic Day 6 lenses. All regions expressed NCAM with an apparent molecular weight of 140 kDa and relatively low levels of polysialylation. The function of NCAM in lens differentiation was investigated using antibodies that inhibit NCAM-mediated adhesion. Two parameters that change during maturation of the lens epithelial cells were monitored: the thickness of the tissue, indicating the length of lens cells, and the particle arrangement of gap junctions, reflecting the state of junctional differentiation. When epithelial cell explants of Embryonic Day 6 lenses were cultured for 5 days, the cells elongated and displayed an increase in the loose, random intramembranous particle arrangements characteristic of maturing lens fiber gap junctions. When the explants were cultured in the presence of anti-NCAM Fabs, the epithelia were thinner than in matched controls and had particle arrangements characteristic of a less mature state. The expression of NCAM during lens differentiation and the effects of attenuating NCAM function suggest that adhesion mediated by NCAM is an essential event in lens cell differentiation.  相似文献   

13.
Mouse 3T3-L1 fibroblast cells, also know as preadipocytes, differentiate in vitro into adipocytes when treated with promoting agents and acquire numerous properties characteristic of mature fat cells. We studied junctional cell-to-cell communication by measuring the incidence of electrical coupling and transfer of carboxy- fluorescein among these cells. When 3T3-L1 cells were induced to differentiate into adipocytes, they lost virtually all cell-cell communication. Preadipocytes that remained nondifferentiated after the treatment maintained normal communication. Loss of communication in the adipocytes invariably coincided with appearance of lipid droplets and not with other phenotypic changes. In the differentiating cells, loss of cell-to-cell communication and lipid accumulation was prevented if dibutyryl cyclic AMP and caffeine were present in the culture medium. Addition of dibutyryl cyclic AMP and caffeine to already differentiated adipocytes resulted in loss of lipid and simultaneously improved junctional permeability. The results demonstrate that in the in vitro 3T3-L1 cell system, (a) cell-to-cell communication and lipid synthesis are intimately related during the adipose conversion and (b) cAMP affects the expression of the two phenotypes.  相似文献   

14.
15.
16.
Carotenoids have been recognized as chemopreventive agents against human diseases, such as cancer and cardiovascular disease. Mammalians utilize carotenoids supplied from their food since they are unable to perform the de novo synthesis of carotenoids. We previously created mammalian cultured cells producing phytoene, a type of carotenoid, and showed that these cells acquired resistance against oxidative stress and oncogenic transformation. In the present study, we established a transgenic mouse line, carrying the crtB gene encoding phytoene synthase, which could produce phytoene endogenously. It was found that connexin 26 was induced in these phytoene-producing mice. Since it is known that carotenoids enhance gap junctional communication by inducing the expression of connexin genes, the present data suggest that the induction of connexin 26 in phytoene-producing mice may play a role in controlling cell-to-cell communication. Phytoene-producing mice provide a useful system in which to investigate the in vivo function of the carotenoid phytoene.  相似文献   

17.
Effects of cAMP on intercellular coupling and osteoblast differentiation   总被引:4,自引:0,他引:4  
Bone-forming cells are organized in a multicellular network interconnected by gap junctions. Direct intercellular communication via gap junctions is an important component of bone homeostasis, coordinating cellular responses to external signals and promoting osteoblast differentiation. The cAMP pathway, a major intercellular signal transduction mechanism, regulates osteoblastic function and metabolism. We investigated the effects of this second messenger on junctional communication and on the expression of differentiation markers in human HOBIT osteoblastic cells. Increased levels of cAMP induce posttranslational modifications (i.e., phosphorylations) of connexin43 and enhancement of gap junction assembly, resulting in an increased junctional permeance to Lucifer yellow and to a positive modulation of intercellular Ca(2+) waves. Increased intercellular communication, however, was accompanied by a parallel decrease of alkaline phosphatase activity and by an increase of osteocalcin expression. cAMP-dependent stimulation of cell-to-cell coupling induces a complex modulation of bone differentiation markers.  相似文献   

18.
Summary In many cell systems, the permeability of membrane junctions is modulated by the cytoplasmic level of free Ca++. To examine whether the calcium-dependent regulatory protein calmodulin is involved in this process, the ability of anticalmodulin drugs to influence the cell-to-cell passage of injected current and an organic tracer was tested using standard intracellular glass microelectrode techniques. Several antipsychotics and local anesthetics were found to block junctional communication in the epidermis of the beetleTenebrio molitor. Treatment of the epidermis with chlorpromazine (0.25 mM) raised intercellular resistance two- to threefold within 20 to 25 min; cell-to-cell passage of electrical current was abolished within 41±5 min. Loss of electrotonic coupling was accompanied by a block in the cell-to-cell movement of the organic tracer carboxyfluorescein. The reaction is fully reversible, with normal electrotonic coupling being restored within 2 to 4 hr. Other antipsychotics and local anesthetics had similar effects on cell coupling. The order of potency found was: trifluoperazine>thioridazine> d-butaclamol>chlorprothixine=chlorpromazine> l-butaclamol> dibucaine>tetracaine. The relative uncoupling potencies of these drugs correlate well with their known ability to inhibit calmodulin-dependent phosphodiesterase activity. Other anesthetic compounds, procaine and pentobarbital, did not block cell-to-cell communication. Altering the extracellular Ca++ concentration did not affect the rate of uncoupling by antipsychotics, while chelation of extracellular Ca++ with EGTA raised electrotonic coupling. The effect of three metabolic inhibitors on coupling was also examined. Iodoacetate uncoupled the epidermal cells while DNP and cyanide did not. These results are discussed in terms of possible mechanisms by which calmodulin may control junctional communication in this tissue.  相似文献   

19.
In Arabidopsis embryogenesis, positional information establishes the overall body plan and lineage-dependent cell fate specifies local patterning. Position-dependent gene expression and responses to the plant hormone auxin are also crucial. Recently, another mechanism that delivers positional information has been uncovered. This pathway utilizes cell-to-cell communication via plasmodesmata. Plasmodesmata span the walls between neighboring plant cells. Groups of cells that allow intercellular transport of biotic and abiotic tracers form symplastic domains of shared communication. Initially, cells of the embryo form one symplast. As development proceeds, symplastic sub-domains that correspond to the major morphological regions of the plant (i.e. shoot apex, cotyledons, hypocotyl, and root) are formed. These sub-domains further resolve into tissue-specific domains of communication (such as protodermal and vascular regions). Cell-to-cell communication via plasmodesmata between embryonic and maternal tissues ceases as development proceeds.  相似文献   

20.

Background  

The dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions. To date, no information is available regarding possible impact of anti-androgens on the proteins involved in the gap junctional communication within the boar epididymis. Thus, a question arised whether prenatal or postnatal exposure to an anti-androgen flutamide alters the expression of gap junction protein - connexin43 (Cx43) and androgen receptor (AR) expression in the caput, corpus and cauda epididymis and leads to delayed effects on morphology and function of adult pig epididymis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号