首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axon initiation and growth cone regeneration in cultured motor neurons   总被引:11,自引:0,他引:11  
Axon initiation in cultured neurons from embryonic ciliary ganglia involves a process in which cell surface motile activity gradually becomes restricted to sites of growth cone formation. Once frank growth cones have commenced to move outward, away from the soma, the broad connecting isthmus of cytoplasm connecting the growth cone to the soma rounds up to form the base of the definitive axon. Motile activity usually does not occur along the sides of axons or of somas. When axons are cut using sharp blades, ruffling and microspike activity are seen on both proximal and distal stumps within times as short as 3–10 min. On rare occasions, portions of the somal surface may also display ruffling and motile activity. It is concluded that the capacity to generate new growth cones and cell surface movements characteristic of locomotion is widely distributed through axoplasm and the neuron.  相似文献   

2.
To study the developmental regulation of a neuropeptide phenotype, we have analyzed the biochemical and morphological differentiation of two identifiable neurons in embryos of the moth, Manduca sexta. The central cell, CF, and the peripheral cell, L1, are both neuroendocrine neurons that express neuropeptides related to the molluscan tetrapeptide FMRFamide. Both neurons project axons to the transverse nerve in each thoracic segment. Within the CF and L1 cells, neuropeptide-like immunoreactivity was localized to secretory granules that had cell-specific morphologies and sizes. The onset of neuropeptide expression in the two cell types displayed a similar pattern: immunoreactivity was first detected in distal processes and soon after within cell bodies. However, the onsets occurred at different times: for the CF cell, neuropeptides were first seen at 60%-63% of embryonic development, after the neuron had extended a long axon into the periphery, while L1 neuropeptide expression began at approximately 42%, as it first extended its growth cone. These times were related in that they corresponded to the arrival times of the respective growth cones at a similar position in the developing peripheral nerve. Within this region of the nerve, the growth cones of both cell types-exhibited a transient and cell-specific interaction with an identified mesodermal cell, called the Syncytium. Like the L1 and B neurons (Carr and Taghert, 1988b), the CF growth cones typically grew past this cell, yet remained attached to it by lamellipodial and filopodial processes of the axon. Ultrastructurally, the interaction involved filopodial adhesion to and insertion within the Syncytial cell. Two other nonneuroendocrine cell types grew axons past this same region, but showed no such tendencies. To test the hypothesis that the morphological and biochemical differentiation of these cells was somehow linked, central ganglia were isolated (as individuals or connected as ganglionic chains) in tissue culture, prior to the time when CF growth cones entered the periphery and prior to the development of CF neuropeptide expression. In the majority of cases, CF neurons nevertheless displayed their neuropeptide phenotype at a normal and cell-specific stage. We conclude that the initiation of neuropeptide expression is highly correlated with schedules of morphological differentiation in these neurons, but that, in the case of the CF neuron, it is not regulated by interactions of the growth cone with peripheral structures.  相似文献   

3.
To study the developmental regulation of a neuropeptide phenotype, we have analyzed the biochemical and morphological differentiation of two identifiable neurons in embryos of the moth, Manduca sexta. The central cell, CF, and the peripheral cell, L1, are both neuroendocrine neurons that express neuropeptides related to the molluscan tetrapeptide FMRFamide. Both neurons project axons to the transvers nerve in each thoracic segment. Within the CF and L1 cells, neuropeptide-like immunoreactivity was localized to secretory granules that had cell specific morphologies and sizes. The onset of neuropeptide expression in the two cell types displayed a similar pattern: immunoreactivity was first detected in distal processes and soon after within cells bodies. However, the onsets occurred at different times: for the CF cell, neuropeptides were first seen at 60%-63% of embryonic development, after the neuron had extended a long axon into the periphery, while L1 neuropeptide expression began at ~42%, as it first extended its growth cone. These times were related in that they corresponded to the arrival times of the respective growth cones at a similar position in the developing peripheral nerve. Withinthis region of the nerve, the growth cones of both cell typesexhibited a transient and cell-specific interaction with an identified mesodermal cell, called the Syncytium. Like the L1 and B neurons (Carr and Taghert, 1988b), the CF growth cones typically grew past this cell, yet remained attached to it by lamellipodial and filopodial processes of the axon. Ultrastructurally, the interaction involved filopodial adhesion to and insertion within the Syncytial cell. Two other nonneuroendocrine cell types grew axons past this same region, but showed no such tendencies. To test the hypothesis that the morphological and biochemical differentiation of these cells was somehow linked, central ganglia were isolated (as individuals or connected as ganglionic chains) in tissue culture, prior to the time when CF growth cones entered the periphery and prior to the development of CF neuropeptide expression. In the majority of cases, CF neurons nevertheless displayed their neuropeptide phenotype at a normal and cell-specific stage. We conclude that the initiation of neuropeptide expression is highly correlated with schedules of morphological differentiation in these neurons, but that, in the case of the CF neuron, it is not regulated by interactions of the growth cone with peripheral structures.  相似文献   

4.
Gaspar  E. M  Tokiwa  M. A  Doering  L. C 《Brain Cell Biology》1997,26(6):407-422
The detailed spatial organization of cytoskeletal proteins in an immortalized sympathoadrenal precursor cell line, termed MAH, was studied when the cells were grown on cellular substrates and when treated with combinations of recombinant nerve growth factor, ciliary neurotrophic factor and basic fibroblast growth factor. In response to growth factors, MAH cells expressed appropriate distributions of phosphorylated and non-phosphorylated neurofilaments, and dendrite and axon specific microtubule associated proteins. Sequential stages of maturation and axon formation were identified as the MAH cells established neuronal polarity and developed into sympathetic-like neurons. Combinations of the growth factors initiated growth associated protein-43 expression in processes and promoted the MAH cells to acquire sympathetic-like neuron characteristics with long, thin processes that branched and often terminated in elaborate growth cones. When treated with the three trophic factors, 15% of the MAH cells differentiated into sympathetic-like neurons, in contrast to less than 10% when cultured with ciliary neurotrophic factor plus nerve growth factor. An enhanced cholinergic phenotype was evident in the MAH cells when grown with ciliary neurotrophic factor. MAH cells also expressed neuron-specific markers when co-cultured on enriched substrates of smooth muscle, fibroblasts or Schwann cells. The results indicate that this sympathoadrenal cell lineage, carrying the v-myc oncogene, can express appropriate cytoskeletal markers in the process of neuronal differentiation when induced by neurotrophic factors or by specific cellular conditions in vitro.  相似文献   

5.
Members of the ADP-ribosylation factor (ARF) family of small guanosine triphosphate-binding proteins play an essential role in membrane trafficking which subserves constitutive protein transport along exocytic and endocytic pathways within eukaryotic cell bodies. In growing neurons, membrane trafficking within motile growth cones distant from the cell body underlies the rapid plasmalemmal expansion which subserves axon elongation. We report here that ARF is a constituent of axonal growth cones, and that application of brefeldin A to neurons in culture produces a rapid arrest of axon extension that can be ascribed to inhibition of ARF function in growth cones. Our findings demonstrate a role for ARF in growth cones that is coupled tightly to the rapid growth of neuronal processes characteristic of developmental and regenerative axon elongation, and indicate that ARF participates not only in constitutive membrane traffic within the cell body, but also in membrane dynamics within growing axon endings.  相似文献   

6.
The growth of spinal ganglion neurons in serum-free medium   总被引:5,自引:0,他引:5  
The presence of serum in the culture medium affects the morphology of spinal ganglion neurons. With serum present, neuronal cell bodies are rounded and axons are predominantly straight. In serum-free medium axons curve all along their lengths, while both cell bodies and growth cones are spread on the substratum. Such “curved” axons straighten if serum is added to the culture dish.Serum-free medium may increase the adhesion of neurons to the substratum. This can account for the curved morphology of axons in serum-free medium, since such axons may represent a “history” of the movement of the growth cone during axon elongation.  相似文献   

7.
The role of lipoproteins secreted by cortical glial cells in axon growth of central nervous system (CNS) neurons was investigated. We first established compartmented cultures of CNS neurons (retinal ganglion cells). Addition of glial cell-conditioned medium (GCM) to distal axons increased the rate of axon extension by approximately 50%. Inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase in glial cells diminished the secretion of cholesterol and apolipoprotein E, and prevented the growth stimulatory effect of GCM. When glia-derived lipoproteins containing apolipoprotein E were provided to distal axons, axon extension was stimulated to the same extent as by GCM. In contrast, addition of lipoproteins to cell bodies failed to enhance growth. The growth stimulatory effect of glial lipoproteins was abrogated in the presence of receptor-associated protein, RAP, indicating involvement of receptor(s) of the low density lipoprotein receptor family in stimulation of axonal extension. These observations suggest that glial cells stimulate axon growth of CNS neurons by providing lipoproteins containing cholesterol and apolipoprotein E to distal axons.  相似文献   

8.
Members of the ADP‐ribosylation factor (ARF) family of small guanosine triphosphate–binding proteins play an essential role in membrane trafficking which subserves constitutive protein transport along exocytic and endocytic pathways within eukaryotic cell bodies. In growing neurons, membrane trafficking within motile growth cones distant from the cell body underlies the rapid plasmalemmal expansion which subserves axon elongation. We report here that ARF is a constituent of axonal growth cones, and that application of brefeldin A to neurons in culture produces a rapid arrest of axon extension that can be ascribed to inhibition of ARF function in growth cones. Our findings demonstrate a role for ARF in growth cones that is coupled tightly to the rapid growth of neuronal processes characteristic of developmental and regenerative axon elongation, and indicate that ARF participates not only in constitutive membrane traffic within the cell body, but also in membrane dynamics within growing axon endings. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 105–115, 1999  相似文献   

9.
Ultrastructural analysis of colloidal gold immunocytochemical staining and immunofluorescence microscopy has been used to study the presence of neural cell adhesion molecule (NCAM) on the surface of neuronal growth cones. The studies were carried out with cultures of rat hypothalamic and ventral mesencephalic cells, using morphology and expression of tyrosine hydroxylase, neurofilaments, and glial fibrillary acidic protein as differential markers for neurons and glia. NCAM was found on all plasmalemmal surfaces of neurons including perikarya and neurites. The density of NCAM varied for different neurons growing in the same culture dish, and neurons had at least 25 times more colloidal gold particles on their plasmalemmal membranes than astroglia. Of particular interest in the present study was a strong labeling for NCAM on all parts of neuritic growth cones, including the lamellar and filopodial processes that extend from the tip of the axon. The density of NCAM was similar on different filopodia of the same growth cone. Therefore, in situations where homophilic (NCAM-NCAM) binding might contribute to axon pathfinding, a choice in direction is more likely to reflect differences in the NCAM content of the environment, rather than the distribution of NCAM within a growth cone. On the other hand, the variation in NCAM levels between single neurons in culture was significant and could provide a basis for selective responses of growing neurites.  相似文献   

10.
The role of calcium-dependent adhesion molecules in the migration of nerve growth cones onto the top of Schwann cells was probed by examination of sensory growth cone-Schwann cell interactions in medium containing either 1.0 mM Ca2+ or 0.1 mM Ca2+. In the presence of 1.0 mM Ca2+ growth cones rapidly migrated onto Schwann cells, spread, and remained for extended periods. However, in 0.1 mM Ca2+ growth cones still made frequent contacts with Schwann cells, but migration onto the upper cell surface was much reduced. This contrast in growth cone-Schwann cell interactions could be switched rapidly by changing the Ca2+ concentration of the culture medium. Growth cones of retinal neurons showed similar calcium-dependence in their migration onto Schwann cells. Antibodies to the calcium-dependent adhesion molecule, N-cadherin, also blocked growth cone migration onto Schwann cells, but antibodies to another neuronal adhesion molecule, L1, had no effect on growth cone-Schwann cell interactions. Immunocytochemical staining for N-cadherin and L1 indicated that growth cones and Schwann cells have N-cadherin on their surfaces, while L1 is present only on axons and growth cones. These results provide two kinds of evidence that N-cadherin is important in the initial interactions of growth cones and Schwann cells.  相似文献   

11.
The neuronal cell population of lumbosacral sympathetic ganglia from 7-day-old chick embryos is characterized by a high proportion of cells with the ability to proliferate in culture (Rohrer and Thoenen, 1987). It is now demonstrated that neither proliferation nor survival of these neurons depend on the presence of nerve growth factor (NGF). However, neuronal survival did depend on the culture substrate used: on laminin, E7 neurons survived and their number increased due to proliferation, whereas on fibronectin (FN) or a substrate of molecules from heart cell-conditioned medium (HCM) a significant number of the cells died during early culture periods. Less than 70 and 50% of the number of neurons surviving on a laminin substrate were found on FN and HCM, respectively, after 3 days in culture. Although NGF did not affect neuronal survival, a small increase in neurite extension on these substrates was observed in the presence of NGF. Furthermore, although NGF did not prevent neuronal death after extended culture periods, this could be prevented by elevated extracellular potassium concentrations. Sympathetic neurons of E8 chick embryos however showed a strikingly different response to NGF compared with those of E7: whereas neuronal survival on laminin was not influenced by NGF, a significant effect of NGF on survival and on neurite extension was observed for E8 neurons on a HCM substrate. In contrast to cells from E7 and E8 embryos, the majority of neurons from E11 chick embryos required NGF for survival even on a laminin substrate as described previously (D. Edgar, R. Timpl, and H. Thoenen, 1984, EMBO J. 3, 1463-1468). These results demonstrate that while sympathetic neurons from E7 chick embryos do not depend on the soluble neurotrophic factor NGF for survival in vitro, they are dependent on molecules of the extracellular matrix. With increasing age, the survival requirements demonstrated in vitro change toward the classical pattern of NGF dependency. Low amounts of laminin-like immunoreactivity were shown to be present in sympathetic ganglia of E7 chick embryos which were then shown to increase as development proceeded. These data indicate that laminin may play a role in the survival and development of chick sympathetic neurons not only in vitro, but also in vivo.  相似文献   

12.
Cytochalasin inhibits transport of deoxyglucose by 96–98% in glial and nerve cells. Incubation of such cells in glucose-free medium does not alter cell behavior associated with locomotion or axon elongation, as contrasted to the effects of CB treatment. In addition, micro-filaments of ruffled membranes and growth cones are also not altered by glucose-free conditions.  相似文献   

13.
The cornea, the most densely innervated tissue on the surface of the body, becomes innervated in a series of highly coordinated developmental events. During cornea development, chick trigeminal nerve growth cones reach the cornea margin at embryonic day (E)5, where they are initially repelled for days from E5 to E8, instead encircling the corneal periphery in a nerve ring prior to entering on E9. The molecular events coordinating growth cone guidance during cornea development are poorly understood. Here we evaluated a potential role for the Robo-Slit nerve guidance family. We found that Slits 1, 2 and 3 expression in the cornea and lens persisted during all stages of cornea innervation examined. Robo1 expression was developmentally regulated in trigeminal cell bodies, expressed robustly during nerve ring formation (E5-8), then later declining concurrent with projection of growth cones into the cornea. In this study we provide in vivo and in vitro evidence that Robo-Slit signaling guides trigeminal nerves during cornea innervation. Transient, localized inhibition of Robo-Slit signaling, by means of beads loaded with inhibitory Robo-Fc protein implanted into the developing eyefield in vivo, led to disorganized nerve ring formation and premature cornea innervation. Additionally, when trigeminal explants (source of neurons) were oriented adjacent to lens vesicles or corneas (source of repellant molecules) in organotypic tissue culture both lens and cornea tissues strongly repelled E7 trigeminal neurites, except in the presence of inhibitory Robo-Fc protein. In contrast, E10 trigeminal neurites were not as strongly repelled by cornea, and presence of Robo-Slit inhibitory protein had no effect. In full, these findings suggest that nerve repulsion from the lens and cornea during nerve ring formation is mediated by Robo-Slit signaling. Later, a shift in nerve guidance behavior occurs, in part due to molecular changes in trigeminal neurons, including Robo1 downregulation, thus allowing nerves to find the Slit-expressing cornea permissive for growth cones.  相似文献   

14.
Sensory neurons were dissociated from lumbar dorsal root ganglia of embryonic chick and put into culture, either directly or after removing non-neuronal cells by density gradient centrifugation. The cells were grown on culture substrata of various kinds in medium containing nerve growth factor (NGF). After 24 h the cultures were fixed, mounted and analysed. Lengths of neurites were measured, and the numbers of primary processes formed at the cell body and of growth cones were counted. From these values, the rates of growth cone advance and frequency of growth cone branching were calculated. Neuronal outgrowths increased strikingly in length and complexity with embryonic age; there was a 3.5-fold increase in total neurite length and a 3-fold increase in the number of growth cones when neurons from 15-day embryos (E15) were compared with those from 8-day embryos (E8) grown on the same substratum (glass). Growth was markedly greater on surfaces prepared with laminin or conditioned medium compared with plain glass or air-dried collagen. When E15 neurons grown on glass were compared with those grown on laminin, for example, a 2.5-fold increase in total neurite length and a 3-fold increase in the number of growth cones was observed. Calculations showed that a major factor in these changes was an increase in the frequency of growth cone branching. The number of initial processes emanating from the cell body changed with age, but not with the different substrata tested. Non-neuronal cells when present in low numbers and in contact with neurons did not appear to influence neuronal geometry in a systematic way. Our results document the fact that both external factors (in this case, the nature of the culture substratum) and intrinsic factors (stage of development of the neuron) can influence the geometry of neurite outgrowth.  相似文献   

15.
The presence of nerve growth factor receptors and the imipramine-sensitive uptake of catecholamines in sympathetic neurons of chick embryos were investigated by autoradiography. Neurons were dissociated from paravertebral ganglia of different embryonic ages and receptors and catecholamine uptake were then determined both at the beginning of culture and after 2 days in culture, at which time the number of surviving neurons is determined by the survival factors present. It was found that while essentially all the neurons specifically bound 125I-NGF both after dissociation and at the end of the culture period, only 60% of the neurons take up [3H]norepinephrine after dissociation, and this proportion remained constant through the culture period under conditions where all the neurons survived. All of the neurons maintained by NGF in culture (35% of the total) displayed this uptake, and in contrast, only one-quarter of those maintained by heart cell-conditioned medium alone (60% of the total) took up catecholamines. The uptake was shown to be neither induced by NGF nor suppressed by heart cell-conditioned medium. These results support the hypothesis that chick sympathetic ganglia contain discrete subpopulations of neurons which may be selected in culture by virtue of their different requirements for survival factors.  相似文献   

16.
The hindbrain of the chick embryo contains three classes of motor neurons: somatic, visceral, and branchial motor. During development, somata of neurons in the last two classes undergo a laterally directed migration within the neuroepithelium; somata translocate towards the nerve exit points, through which motor axons are beginning to extend into the periphery. All classes of motor neuron are immunopositive for the SC1/DM-GRASP cell surface glycoprotein. We have examined the relationship between patterns of motor neuron migration, axon outgrowth, and expression of the SC1/DM-GRASP mRNA and protein, using anterograde or retrograde axonal tracing, immunohistochemistry, and in situ hybridization. We find that as motor neurons migrate laterally, SC1/DM-GRASP is down-regulated, both on neuronal somata and axonal surfaces. Within individual motor nuclei, these lateral, more mature neurons are found to possess longer axons than the young, medial cells of the population. Labelling of sensory or motor axons growing into the second branchial arch also shows that motor axons reach the muscle plate first, and that SC1/DM-GRASP is expressed on the muscle at the time growth cones arrive. 1994 John Wiley & Sons, Inc.  相似文献   

17.
The identification of surface proteins restricted to subsets of embryonic axons and growth cones may provide information on the mechanisms underlying axon fasciculation and pathway selection in the vertebrate nervous system. We describe here the characterization of a 135 kd cell surface glycoprotein, TAG-1, that is expressed transiently on subsets of embryonic spinal cord axons and growth cones. TAG-1 is immunochemically distinct from the cell adhesion molecules N-CAM and L1 (NILE) and is expressed on commissural and motor neurons over the period of initial axon extension. Moreover, TAG-1 and L1 appear to be segregated on different segments of the same embryonic spinal axons. These observations provide evidence that axonal guidance and pathway selection in vertebrates may be regulated in part by the transient and selective expression of distinct surface glycoproteins on subsets of developing neurons.  相似文献   

18.
The effect of nerve growth factor (NGF), a substance that promotes the differentiation and maintenance of certain neurons, was studied via scanning electron microscopy utilizing the PC12 clonal NGF-responsive pheochromocytoma cell line. After 2-4 d of exposure to NGF, these cells acquire many of the properties of normal sympathic neurons. However, by phase microscopy, no changes are discernible within the first 12-18 h. Since the primary NGF receptor appears to be a membrane receptor, it seemed likely that some of the initial responses to the factor may be surface related. PC12 cells maintained without NGF are round to ovoid and have numerous microvilli and small blebs. After the addition of NGF, there is a rapidly initiated sequential change in the cell surface. Ruffles appear over the dorsal surface of the cells with 1 min, become prominent by 3 min, and almost disappear by 7 min. Microvilli, conversely, disappear as the dorsal ruffles become prominent. Ruffles are seen at the the periphery of cell at 3 min, are prominent on most of the cells by 7 min and are gone by 15 min. The surface remains smooth from 15 min until 45 min when large blebs appear. The large blebs are present on most cells at 2 h and are gone by 4 h. The surface remains relatively smooth until 6-7 h of NGF treatment, when microvilli reappear as small knobs. These microvilli increase in both number and length to cover the cell surface by 10 h. These changes were not observed with other basic proteins, with α-bungarotoxin (which binds specifically to PC12 membranes), and were not affected by an RNA synthesis inhibitor that blocks initiation of neurite outgrowth. Changes in the cell surface architecture appear to be among the earlist NGF responses yet detected and may represent or reflect primary events in the mechanism of the factor’s action.  相似文献   

19.
A wide variety of cell types respond to electric fields in culture. Despite evidence for electric fields existing in the mammalian embryo, there are few studies testing the effects electric fields exert on neurons from the mammalian central nervous system (CNS). The present study demonstrates orientation responses to focally applied electric fields of embryonic rat hippocampal neurons isolated in culture. The most striking result from this study is that different growth cones of the same neuron can show differential responsiveness to focally applied electric fields: growth cones on the short straight processes that are destined to become dendrites, oriented toward the cathode, whereas growth cones on the longest process, the presumptive axon, did not orient. The present experiments bring a significant increase in resolution to the study of neuronal growth cone orientation by applied electric fields: a novel examination of the early events leading to orientation. Growth cones on dendrites displayed a spectrum of orientation responses: directed lamellipodial extension, directed filopodial extension and/or reorientation, cytoplasmic swelling of existing filopodia, consolidation of filopodia, and rapid elongation of the entire process. Individual growth cones displayed only one or two of these responses. Additionally, not all growth cones on these short processes sustained their initial orientation response: 35% adapted within 6 min. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Nitric oxide and cGMP influence axonogenesis of antennal pioneer neurons   总被引:2,自引:0,他引:2  
The grasshopper embryo has been used as a convenient system with which to investigate mechanisms of axonal navigation and pathway formation at the level of individual nerve cells. Here, we focus on the developing antenna of the grasshopper embryo (Schistocerca gregaria) where two siblings of pioneer neurons establish the first two axonal pathways to the CNS. Using immunocytochemistry we detected nitric oxide (NO)-induced synthesis of cGMP in the pioneer neurons of the embryonic antenna. A potential source of NO are NADPH-diaphorase-stained epithelial cells close to the basal lamina. To investigate the role of the NO/cGMP signaling system during pathfinding, we examined the pattern of outgrowing pioneer neurons in embryo culture. Pharmacological inhibition of soluble guanylyl cyclase (sGC) and of NO synthase (NOS) resulted in an abnormal pattern of pathway formation in the antenna. Axonogenesis of both pairs of pioneers was inhibited when specific NOS or sGC inhibitors were added to the culture medium; the observed effects include the loss axon emergence as well as retardation of outgrowth, such that growth cones do not reach the CNS. The addition of membrane-permeant cGMP or a direct activator of the sGC enzyme to the culture medium completely rescued the phenotype resulting from the block of NO/cGMP signaling. These results indicate that NO/cGMP signaling is involved in axonal elongation of pioneer neurons in the antenna of the grasshopper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号