首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transposon mutagenesis was used to isolate mutants of Aeromonas hydrophila which were deficient in the production of extracellular proteins. The culture supernatants of two of the mutants were essentially devoid of the proteins normally secreted by the parent strain, despite their continued synthesis. Western immunoblot analysis of one of these proteins indicated that normal signal sequence processing occurred but that normal zymogen activation did not, and cell fractionation experiments indicated that both mutants accumulated the three different extracellular proteins assayed in a position external to the cytoplasmic membrane, presumably in the periplasm. The two mutants differed, however, in that one was lysed during the osmotic shock procedures and also contained severely reduced amounts of two of the major protein components of the outer membrane. The wild-type chromosomal regions into which the transposon had been inserted in the two mutants were cloned. In each case, transconjugants of the mutants containing the corresponding cloned fragment were complemented for the defects in secretion, and one of the mutants was complemented by the heterologous clone as well, suggesting the possibility of an interaction between these two genes or gene products. These results indicate that two separate functions which are required for extracellular secretion were interrupted in the insertion mutants and that one of these is also critically important in the biogenesis of the outer membrane.  相似文献   

2.
The xcp genes are required for protein secretion by Pseudomonas aeruginosa. They are involved in the second step of the process, i.e. the translocation across the outer membrane, after the exoproteins have reached the periplasm in a signal peptide dependent fashion. The nucleotide sequence of a 2.5 kb DNA fragment containing xcp genes showed at least two complete open reading frames, potentially encoding proteins with molecular weights of 41 and 19 kd. Products with these apparent molecular weights were identified after expression of the DNA fragment in vitro and in vivo. Subcloning and complementation experiments showed that both proteins are required for secretion. The two products are located in the inner membrane and share highly significant homologies with the PulL and PulM proteins which are required for the specific secretion of pullulanase in Klebsiella pneumoniae. These homologies reveal the existence of a common mechanism for protein secretion in Pseudomonas aeruginosa and Klebsiella pneumoniae.  相似文献   

3.
S P Howard  J Critch    A Bedi 《Journal of bacteriology》1993,175(20):6695-6703
The exeE gene of Aeromonas hydrophila has been shown to be required for the secretion of most if not all of the extracellular proteins produced by this bacterium. In addition, an exeE::Tn5-751 insertion mutant of A. hydrophila was found to be deficient in the amounts of a number of its major outer membrane proteins (B. Jiang and S. P. Howard, J. Bacteriol. 173:1241-1249, 1991). The exeE gene and the exeF gene were previously isolated as part of a fragment which complemented this mutant. In this study, we have isolated and sequenced a further eight exe genes, exeG through exeN, which constitute the 3' end of the exe operon. These genes have a high degree of similarity with the extracellular secretion operons of a number of different gram-negative bacteria. Marker exchange mutagenesis was used to insert kanamycin resistance cassettes into three different regions of the exe operon. The phenotypes of these mutants showed that in A. hydrophila this operon is required not only for extracellular protein secretion but also for normal assembly of the outer membrane, in particular with respect to the quantities of the major porins. Five of the Exe proteins contain type IV prepilin signal sequences, although the prepilin peptidase gene does not appear to form part of the exe operon. Limited processing of the ExeG protein was observed when it was expressed in Escherichia coli, and this processing was greatly accelerated in the presence of the prepilin peptidase of Pseudomonas aeruginosa.  相似文献   

4.
Collagen-binding protein (CNBP) synthesized by Aeromonas veronii is located conserved within the subcellular fraction. The results of this study show that 98% of the total CNBP produced by Aer. veronii is present in the extracellular medium, and that the remaining CNBP is distributed either on the cell surface, within the periplasm or anchored on the outer membrane. CNBP is specifically secreted from Aer. veronii into the culture medium, because all the beta-lactamase activity was located in the cells and could be released by polymixin B extraction of periplasmic proteins. CNBP was produced at growth temperatures from 12 degrees C to 42 degrees C, but not at 4 degrees C. The findings indicate that the level of CNBP in the medium increases during the exponential growth phase and reaches a maximum during the early stationary phase. There was less CNBP production in poor nutrient MMB medium than in the rich LB nutrient medium. CNBP secretion, in contrast to aerolysin secretion, was unaffected by the exeA mutation of Aer. hydrophila. It is concluded that CNBP secretion from Aer. veronii must be achieved by a mechanism different from that reported for aerolysin secretion.  相似文献   

5.
Aeromonas hydrophila secretes protein toxins via the type II pathway, involving the products of at least two operons, exeAB (gspAB) and exeC-N (gspC-N). In the studies reported here, aerolysin secretion was restored to C5.84, an exeA::Tn5-751 mutant, by overexpression of exeD alone in trans. Expression studies indicated that these results did not reflect a role of ExeAB in the regulation of the exeC-N operon. Instead, immunoblot analysis showed that ExeD did not multimerize in C5.84, and fractionation of the membranes showed that the monomeric ExeD remained in the inner membrane. Expression of ExeAB, but not either protein alone, from a plasmid in C5.84 resulted in increases in the amount of multimeric ExeD, which correlated with increases in aerolysin secretion. Pulse-chase analysis also suggested that the induction of ExeAB allowed multimerization of previously accumulated monomer ExeD. In C5.84 cells overproducing ExeD, it multimerized even in the absence of ExeAB and, although most remained in the inner membrane, an amount similar to that in wild-type outer membranes fractionated with the outer membrane of the overproducing cells. These results indicate that the secretion defect of exeAB mutants is a result of an inability to assemble the ExeD secretin in the outer membrane. The localization and multimerization of overproduced ExeD in these mutants further suggests that the ExeAB complex plays either a direct or indirect role in the transport of ExeD into the outer membrane.  相似文献   

6.
xcp mutations have pleiotropic effects on the secretion of proteins in Pseudomonas aeruginosa PAO. The nucleotide sequence of a 1.2-kb DNA fragment that complements the xcp-1 mutation has been determined. Sequence analysis shows the xcpA gene product to be a 31.8-kDa polypeptide, with a highly hydrophobic character. This is consistent with a localization in the cytoplasmic membrane in P. aeruginosa, determined after specific expression of the xcpA gene under control of the T7 phi 10 promoter. A very strong homology was found between XcpA and PulO, a membrane protein required for pullulanase secretion in Klebsiella pneumoniae. This suggests the existence of a signal sequence-dependent secretion process common to these two unrelated gram-negative bacteria.  相似文献   

7.
Secretion of amber fragments of an E. coli periplasmic protein, the maltose-binding protein, was studied to determine if the mature portion of the protein is required for its export across the cytoplasmic membrane. A fragment lacking 25–35 amino acid residues at the C terminus is secreted at normal levels, suggesting that this sequence is not required for secretion. This is in contrast to the results obtained with the periplasmic protein β-lactamase. In studying another fragment of one-third the molecular weight of the intact protein, we found that the majority of the fragment is not recovered from the periplasmic fraction. However, a small amount of secretion of this polypeptide was observed. This fragment is synthesized as a larger molecular weight form when cells are induced for the synthesis of a maltose-binding protein-β-galactosidase hybrid protein, which was previously shown to block the proper localization and processing of envelope proteins. This result is consistent with the idea that the larger form is a precursor with an unprocessed signal sequence, whereas in the absence of the hybrid protein the fragment is a processed mature form. Thus secretion of the smaller fragment may be occurring up to the point where the signal sequence is removed. That this fragment has passed through the cytoplasmic membrane is further supported by its accessibility to externally added trypsin. We suggest that the fragment may be secreted to the periplasm, but cannot assume a water-soluble conformation; the majority of the polypeptide may be associated with the external surface of the cytoplasmic membrane. Thus the mature sequence of maltose-binding protein, at least its C-terminal two thirds, may not be required for its export across the cytoplasmic membrane.  相似文献   

8.
The Aeromonas hydrophila Tn5-751 insertion mutant L1.97 is unable to secrete extracellular proteins, and is fragile because of defective assembly of its outer membrane. A KpnI 4.1 kb fragment, which complements this mutant when supplied with an exogenous promoter, was isolated and sequenced. It contains two complete genes, exeE and exeF, plus fragments of two others and may form part of an operon. The exeE and exeF open reading frames encode 501-residue M(r) 55,882 and 388-residue M(r) 43,431 proteins, respectively. These genes were expressed in vitro and their initiation codons verified by deletion analysis. Tn5-751 had inserted near the centre of the exeE gene in the L1.97 strain. Subclones of the KpnI 4.1 kb fragment which contained only the exeE gene fully complemented the mutation, indicating that its function is required both for extracellular secretion and outer membrane assembly. ExeE and ExeF are highly similar to other proteins which have been shown to be involved in extracellular secretion, suggesting that an additional export apparatus beyond that required for inner membrane translocation may be part of the physiology of many Gram-negative bacteria.  相似文献   

9.
H M Lu  S Mizushima    S Lory 《Journal of bacteriology》1993,175(22):7463-7467
Pseudomonas aeruginosa exotoxin A is synthesized with a secretion signal peptide typical of proteins whose final destination is the periplasm. However, exotoxin A is released from the cell without a detectable periplasmic pool, suggesting that additional determinants in this protein are important for recognition by a specialized machinery of extracellular secretion. The role of the N terminus of the mature exotoxin A in this recognition was investigated. A series of exotoxin A proteins with amino acid substitutions for the glutamic acid pair at the +2 and +3 positions were constructed by mutagenesis of the exotoxin A gene. These N-terminal acidic residues of the mature exotoxin A protein were found to be important not only for efficient processing of the precursor protein but also for extracellular localization of the toxin. The mutated exotoxin A proteins, in which a glutamic acid at the +2 position was replaced by a lysine or a double substitution of lysine and glutamine for the pair of adjacent glutamic acids, accumulated in precursor forms in the mixed cytoplasmic and membrane fractions, which was not seen with the wild-type exotoxin A. The processing of the precursor form of one exotoxin A mutant, in which the glutamic acid at the +2 position was replaced with a glutamine, was not affected. Moreover, a substantial fraction of the mature forms of all three mutants of exotoxin A accumulated in the periplasm, while wild-type exotoxin A could be detected only extracellularly. The periplasmic pools of these variants of exotoxin A could therefore represent the intermediate state during extracellular secretion. The signal for extracellular localization may be located in a small region near the amino terminus of the mature protein or could consist of several regions that are brought together after the polypeptide has folded. Alternatively, the acidic residues may be important for ensuring a conformation essential for exotoxin A to traverse the outer membrane.  相似文献   

10.
Extracellular secretion of Serratia marcescens nuclease occurs as a two-step process via a periplasmic intermediate. Unlike other extracellular proteins secreted by gram-negative bacteria by the general secretory pathway, nuclease accumulates in the periplasm in its active form for an unusually long time before its export into the growth medium. The energy requirements for extracellular secretion of nuclease from the periplasm were investigated. Our results suggest that the second step of secretion across the outer membrane is dependent upon the external pH; acidic pH effectively but reversibly blocks extracellular secretion. However, electrochemical proton gradient, and possibly ATP hydrolysis, are not required for this step. We suggest that nuclease uses a novel mechanism for the second step of secretion in S. marcescens.  相似文献   

11.
The xcp genes are required for the secretion of most extracellular proteins by Pseudomonas aeruginosa. The products of these genes are essential for the transport of exoproteins across the outer membrane after they have reached the periplasm via a signal sequence-dependent pathway. To date, analysis of three xcp genes has suggested the conservation of this secretion pathway in many Gram-negative bacteria. Furthermore, the xcpA gene was shown to be identical to pilD, which encodes a peptidase involved in the processing of fimbrial (pili) subunits, suggesting a connection between pili biogenesis and protein secretion. Here the nucleotide sequences of seven other xcp genes, designated xcpR to -X, are presented. The N-termini of four of the encoded Xcp proteins display similarity to the N-termini of type IV pili, suggesting that XcpA is involved in the processing of these Xcp proteins. This could indeed be demonstrated in vivo. Furthermore, two other proteins, XcpR and XcpS, show similarity to the PilB and PilC proteins required for fimbriae assembly. Since XcpR and PilB display a canonical nucleotide-binding site, ATP hydrolysis may provide energy for both systems.  相似文献   

12.
C3 ADP-ribosyltransferase is an exoenzyme produced by certain strains of Clostridium botulinum types C and D, which specifically ADP-ribosylates rho and rac proteins in eukaryotic cells. The enzyme was purified from a culture filtrate of C. botulinum type C strain 003-9, and the amino acid sequence from the amino-terminal Ser to Asn192 was determined by Edman degradation. Using a set of degenerate primers based on the sequence, we amplified a part of the gene for this enzyme by polymerase chain reaction. A 2.1-kilobase pair HincII fragment of C. botulinum DNA containing the whole structural gene was then identified by Southern analysis with the polymerase chain reaction product as a probe, and the complete nucleotide structure of the gene together with flanking regions was determined by cloning and DNA sequencing the HincII fragment. The gene encodes a protein of 244 amino acids with a Mr of 27,362 which begins with a putative signal peptide of 40 amino acids. Escherichia coli carrying this gene produced the active enzyme, and about 60% of it was found in the culture medium. Immunoblot analysis with antiserum against the enzyme revealed the presence of two immunoreactive proteins of 27 and 23 kDa in the cytoplasmic/membrane fraction and only the 23-kDa protein in the periplasm and the medium, suggesting that the enzyme expressed is processed in the E. coli, exported into the periplasm and released into the culture medium.  相似文献   

13.
Pseudomonas syringae pv. syringae 61 contains a 25-kb cluster of hrp genes that are required for elicitation of the hypersensitive response (HR) in tobacco. TnphoA mutagenesis of cosmid pHIR11, which contains the hrp cluster, revealed two genes encoding exported or inner-membrane-spanning proteins (H.-C. Huang, S. W. Hutcheson, and A. Collmer, Mol. Plant-Microbe Interact. 4:469-476, 1991). The gene in complementation group X, designated hrpH, was subcloned on a 3.1-kb SalI fragment into pCPP30, a broad-host-range, mobilizable vector. The subclone restored the ability of hrpH mutant P. syringae pv. syringae 61-2089 to elicit the HR in tobacco. DNA sequence analysis of the 3.1-kb SalI fragment revealed a single open reading frame encoding an 81,956-Da preprotein with a typical amino-terminal signal peptide and no likely inner-membrane-spanning hydrophobic regions. hrpH was expressed in the presence of [35S]methionine by using the T7 RNA polymerase-promoter system and vector pT7-3 in Escherichia coli and was shown to encode a protein with an apparent molecular weight of 83,000 on sodium dodecyl sulfate-polyacrylamide gels. The HrpH protein in E. coli was located in the membrane fraction and was absent from the periplasm and cytoplasm. The HrpH protein possessed similarity with several outer membrane proteins that are known to be involved in protein or phage secretion, including the Klebsiella oxytoca PulD protein, the Yersinia enterocolitica YscC protein, and the pIV protein of filamentous coliphages. All of these proteins possess a possible secretion motif, GG(X)12VP(L/F)LXXIPXIGXL(F/L), near the carboxyl terminus, and they lack a carboxyl-terminal phenylalanine, in contrast to other outer membrane proteins with no known secretion function. These results suggest that the P. syringae pv. syringae HrpH protein is involved in the secretion of a proteinaceous HR elicitor.  相似文献   

14.
15.
The plant pathogenic enterobacterium Erwinia chrysanthemi EC16 secretes several extracellular, plant cell wall-degrading enzymes, including pectate lyase isozyme PelE. Secretion kinetics of 35S-labeled PelE indicated that the precursor of PelE was rapidly processed by the removal of the amino-terminal signal peptide and that the resulting mature PelE remained cell bound for less than 60 s before being secreted to the bacterial medium. PelE-PhoA (alkaline phosphatase) hybrid proteins generated in vivo by TnphoA insertions were mostly localized in the periplasm of E. chrysanthemi, and one hybrid protein was observed to be associated with the outer membrane of E. chrysanthemi in an out gene-dependent manner. A gene fusion resulting in the substitution of the beta-lactamase signal peptide for the first six amino acids of the PelE signal peptide did not prevent processing or secretion of PelE in E. chrysanthemi. When pelE was overexpressed, mature PelE protein accumulated in the periplasm rather than the cytoplasm in cells of E. chrysanthemi and Escherichia coli MC4100 (pCPP2006), which harbors a functional cluster of E. chrysanthemi out genes. Removal of the signal peptide from pre-PelE was SecA dependent in E. coli MM52 even in the presence of the out gene cluster. These data indicate that the extracellular secretion of pectic enzymes by E. chrysanthemi is an extension of the Sec-dependent pathway for general export of proteins across the bacterial inner membrane.  相似文献   

16.
Mutations in the β-lactamase structural gene that alter the signal peptide were used to study secretion into the periplasm of Salmonella typhimurium. Processing and cellular location of mutant gene products were followed by pulse-chase and cell-fractionation experiments and by trypsin accessibility in intact and lysed spheroplasts. The precursor proteins examined never appear as a free species in the periplasm. Two of the signal-sequence mutants accumulate a precursor form that is trypsin-accessible in intact spheroplasts; the precursors synthesized by the remaining mutants resemble wild-type in that they remain trypsin-inaccessible. One of the latter mutants does produce mature protein, but at a very reduced rate. It thus appears that signal-sequence mutations can affect more than one step in the secretion process, and that processing of the signal peptide is not required for the protein to be translocated (at least partially) across the inner membrane.  相似文献   

17.
The 17-kb kps gene cluster encodes proteins necessary for the synthesis, assembly, and translocation of the polysialic acid capsule of Escherichia coli K1. We previously reported that one of these genes, kpsD, encodes a 60-kDa periplasmic protein that is involved in the translocation of the polymer to the cell surface. The nucleotide sequence of the 2.4-kb BamHI-PstI fragment accommodating the kpsD gene was determined. Sequence analysis showed an open reading frame for a 558-amino-acid protein with a typical N-terminal prokaryotic signal sequence corresponding to the first 20 amino acids. KpsD was overexpressed, partially purified, and used to prepare polyclonal antiserum. A chromosomal insertion mutation was generated in the kpsD gene and results in loss of surface expression of the polysialic acid capsule. Immunodiffusion analysis and electron microscopy indicated that polysaccharide accumulates in the periplasmic space of mutant cells. A wild-type copy of kpsD supplied in trans complemented the chromosomal mutation, restoring extracellular expression of the K1 capsule. However, a kpsD deletion derivative (kpsD delta C11), which results in production of a truncated KpsD protein lacking its 11 C-terminal amino acids, was nonfunctional. Western blot (immunoblot) data from cell fractions expressing KpsD delta C11 suggest that the truncated protein was inefficiently exported into the periplasm and localized primarily to the cytoplasmic membrane.  相似文献   

18.
The heat-stable enterotoxin (ST) produced by enterotoxigenic Escherichia coli is an extracellular peptide toxin that evokes watery diarrhea in the host. Two types of STs, STI and STII, have been found. Both STs are synthesized as precursor proteins and are then converted to the active forms with intramolecular disulfide bonds after being released into the periplasm. The active STs are finally translocated across the outer membrane through a tunnel made by TolC. However, it is unclear how the active STs formed in the periplasm are led to the TolC channel. Several transporters in the inner membrane and their periplasmic accessory proteins are known to combine with TolC and form a tripartite transport system. We therefore expect such transporters to also act as a partner with TolC to export STs from the periplasm to the exterior. In this study, we carried out pulse-chase experiments using E. coli BL21(DE3) mutants in which various transporter genes (acrAB, acrEF, emrAB, emrKY, mdtEF, macAB, and yojHI) had been knocked out and analyzed the secretion of STs in those strains. The results revealed that the extracellular secretion of STII was largely decreased in the macAB mutant and the toxin molecules were accumulated in the periplasm, although the secretion of STI was not affected in any mutant used in this study. The periplasmic stagnation of STII in the macAB mutant was restored by the introduction of pACYC184, containing the macAB gene, into the cell. These results indicate that MacAB, an ATP-binding cassette transporter of MacB and its accessory protein, MacA, participates in the translocation of STII from the periplasm to the exterior. Since it has been reported that MacAB cooperates with TolC, we propose that the MacAB-TolC system captures the periplasmic STII molecules and exports the toxin molecules to the exterior.  相似文献   

19.
Chromatin proteins which were extracted with 0.3 M NaCl from rat liver, brain, and kidney nuclei were examined by the protein blotting technique for their ability to bind to the 5' upstream regions of the rat serum albumin gene. A 110-kDa protein from liver nuclei bound specifically to the most upstream fragment (between approximately equal to -7.3 kbp and -2.0 kbp from the cap site) of the cloned albumin genomic DNA, whereas no proteins from kidney and brain bound to this fragment. It is possible that the 110-kDa protein is concerned with the tissue-specific expression of the albumin gene.  相似文献   

20.
The kup (formerly trkD) gene from Escherichia coli encodes a minor K(+)-uptake system. The gene is located just upstream of the rbsDACBK operon at 84.5 min on the chromosome and is transcribed clockwise. kup codes for a 69-kDa protein, which may be composed of two domains. The first 440 amino acid residues appear to form an integral membrane protein that might traverse the cell membrane 12 times. The C-terminal 182 amino acid residues are predicted to form a hydrophilic domain located at the cytoplasmic side of the membrane. Deletion studies from the 3' end of kup showed that removal of almost the complete hydrophilic domain of the protein reduced, but did not abolish, K(+)-uptake activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号