首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
An asymmetrical network of cortically localized PAR proteins forms shortly after fertilization of the C. elegans egg. This network is required for subsequent asymmetries in the expression patterns of several proteins that are encoded by nonlocalized, maternally expressed mRNAs. We provide evidence that two nearly identical genes, mex-5 and mex-6, link PAR asymmetry to those subsequent protein asymmetries. MEX-5 is a novel, cytoplasmic protein that is localized through PAR activities to the anterior pole of the 1-cell stage embryo. MEX-5 localization is reciprocal to that of a group of posterior-localized proteins called germline proteins. Ectopic expression of MEX-5 is sufficient to inhibit the expression of germline proteins, suggesting that MEX-5 functions to inhibit anterior expression of the germline proteins.  相似文献   

6.
7.
During C. elegans embryogenesis an 8-cell stage blastomere, called MS, undergoes a reproducible cleavage pattern, producing pharyngeal cells, body wall muscles, and cell deaths. We show here that maternal-effect mutations in the pie-1 and mex-1 genes cause additional 8-cell stage blastomeres to adopt a fate very similar to that of the wild-type MS blastomere. In pie-1 mutants one additional posterior blastomere adopts an MS-like fate, and in mex-1 mutants four additional anterior blastomeres adopt an MS-like fate. We propose that maternally provided pie-1(+) and mex-1(+) gene products may function in the early embryo to localize or regulate factors that determine the fate of the MS blastomere.  相似文献   

8.
During chemotactic signaling by Escherichia coli, autophosphorylation of the histidine kinase CheA is coupled to chemoreceptor control by the CheW protein, which interacts with the C-terminal P5 domain of CheA. To identify P5 determinants important for CheW binding and receptor coupling control, we isolated and characterized a series of P5 missense mutants. The mutants fell into four phenotypic groups on the basis of in vivo behavioral and protein stability tests and in vitro assays with purified mutant proteins. Group 1 mutants exhibited autophosphorylation and receptor-coupling defects, and their CheA proteins were subject to relatively rapid degradation in vivo. Group 1 mutations were located at hydrophobic residues in P5 subdomain 2 and most likely caused folding defects. Group 2 mutants made stable CheA proteins with normal autophosphorylation ability but with defects in CheW binding and in receptor-mediated activation of CheA autophosphorylation. Their mutations affected residues in P5 subdomain 1 near the interface with the CheA dimerization (P3) and ATP-binding (P4) domains. Mutant proteins of group 3 were normal in all tests yet could not support chemotaxis, suggesting that P5 has one or more important but still unknown signaling functions. Group 4 mutant proteins were specifically defective in receptor-mediated deactivation control. The group 4 mutations were located in P5 subdomain 1 at the P3/P3' interface. We conclude that P5 subdomain 1 is important for CheW binding and for receptor coupling control and that these processes may require substantial motions of the P5 domain relative to the neighboring P3 and P4 domains of CheA.  相似文献   

9.
The single C. elegans member of the retinoblastoma gene family, lin-35 Rb, was originally identified as a synthetic Multivulva (synMuv) gene [1]. These genes form two redundant classes, A and B, that repress ectopic vulval cell fate induction. Recently, we demonstrated that lin-35 Rb also acts as a negative regulator of G(1) progression and likely is the major target of cyd-1 Cyclin D and cdk-4 CDK4/6. Here, we describe G(1) control functions for several other class B synMuv genes. We found that efl-1 E2F negatively regulates cell cycle entry, while dpl-1 DP appeared to act both as a positive and negative regulator. In addition, we identified a negative G(1) regulatory function for lin-9 ALY, as well as lin-15B and lin-36, which encode novel proteins. Inactivation of lin-35 Rb, efl-1, or lin-36 allowed S phase entry in the absence of cyd-1/cdk-4 and increased ectopic cell division when combined with cki-1 Cip/Kip RNAi. These data are consistent with lin-35 Rb, efl-1, and lin-36 acting in a common pathway or complex that negatively regulates G(1) progression. In contrast, lin-15B appeared to act in parallel to lin-35. Our results demonstrate the potential for genetic identification of novel G(1) regulators in C. elegans.  相似文献   

10.
Li C  Iosef C  Jia CY  Gkourasas T  Han VK  Shun-Cheng Li S 《Biochemistry》2003,42(50):14885-14892
The X-linked lymphoproliferative (XLP) syndrome is caused by mutations or deletions in the SH2D1A gene that encodes an SH2 domain protein named SH2D1A or SAP. The identification of a number of missense mutations within the protein's SH2 domain, each of which can directly cause disease, provides a unique opportunity to investigate the function of an interaction protein module, SH2, in the pathogenesis of XLP. We show here that SAP mutants found in XLP patients are defective in binding its physiological ligands signaling lymphocyte activating molecule (SLAM), a co-receptor in T cell activation, and Fyn, a Src family protein tyrosine kinase. Consequently, these mutants are deficient in signaling through the SLAM receptor. This is reflected by compromised abilities for the mutants to recruit Fyn to SLAM and to activate Fyn, by reduced phosphorylation of the receptor, and by deficiencies for the mutants in blocking binding of SHP-2 to SLAM. Furthermore, all mutants examined are defective in protein folding as manifested by their significantly reduced melting temperatures upon thermal denaturation, compared to that of SAP. Taken together, these results suggest that defects in ligand binding, receptor signaling, and protein folding collectively contribute to the loss of function for disease-causing SAP mutants.  相似文献   

11.
Adipose tissue lipogenesis is paradoxically impaired in human obesity, promoting ectopic triglyceride (TG) deposition, lipotoxicity, and insulin resistance. We previously identified mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4), a sterile 20 protein kinase reported to be upstream of c-Jun NH2-terminal kinase (JNK) signaling, as a novel negative regulator of insulin-stimulated glucose transport in adipocytes. Using full-genome microarray analysis we uncovered a novel role for Map4k4 as a suppressor of lipid synthesis. We further report here the surprising finding that Map4k4 suppresses adipocyte lipogenesis independently of JNK. Thus, while Map4k4 silencing in adipocytes enhances the expression of lipogenic enzymes, concomitant with increased conversion of 14C-glucose and 14C-acetate into TGs and fatty acids, JNK1 and JNK2 depletion causes the opposite effects. Furthermore, high expression of Map4k4 fails to activate endogenous JNK, while Map4k4 depletion does not attenuate JNK activation by tumor necrosis factor α. Map4k4 silencing in cultured adipocytes elevates both the total protein expression and cleavage of sterol-regulated element binding protein-1 (Srebp-1) in a rapamycin-sensitive manner, consistent with Map4k4 signaling via mechanistic target of rapamycin complex 1 (mTORC1). We show Map4k4 depletion requires Srebp-1 upregulation to increase lipogenesis and further show that Map4k4 promotes AMP-protein kinase (AMPK) signaling and the phosphorylation of mTORC1 binding partner raptor (Ser792) to inhibit mTORC1. Our results indicate that Map4k4 inhibits adipose lipogenesis by suppression of Srebp-1 in an AMPK- and mTOR-dependent but JNK-independent mechanism.  相似文献   

12.
13.
14.
15.
Integrin-linked kinase (ILK) was identified by its interaction with the cytoplasmic tail of human beta1 integrin and previous data suggest that ILK is a component of diverse signaling pathways, including integrin, Wnt, and protein kinase B. Here we show that the absence of ILK function in Drosophila causes defects similar to loss of integrin adhesion, but not similar to loss of these signaling pathways. ILK mutations cause embryonic lethality and defects in muscle attachment, and clones of cells lacking ILK in the adult wing fail to adhere, forming wing blisters. Consistent with this, an ILK-green fluorescent protein fusion protein colocalizes with the position-specific integrins at sites of integrin function: muscle attachment sites and the basal junctions of the wing epithelium. Surprisingly, mutations in the kinase domain shown to inactivate the kinase activity of human ILK do not show any phenotype in Drosophila, suggesting a kinase-independent function for ILK. The muscle detachment in ILK mutants is associated with detachment of the actin filaments from the muscle ends, unlike integrin mutants, in which the primary defect is detachment of the plasma membrane from the extracellular matrix. Our data suggest that ILK is a component of the structure linking the cytoskeleton and the plasma membrane at sites of integrin-mediated adhesion.  相似文献   

16.
Elaboration of the Drosophila body plan depends on a series of cell-identity decisions and morphogenetic movements regulated by intercellular signals. For example, Jun N-terminal kinase signaling regulates cell fate decisions and morphogenesis during dorsal closure, while Wingless signaling regulates segmental patterning of the larval cuticle via Armadillo. wingless or armadillo mutant embryos secrete a lawn of ventral denticles; armadillo mutants also exhibit dorsal closure defects. We found that mutations in puckered, a phosphatase that antagonizes Jun N-terminal kinase, suppress in a dose-sensitive manner both the dorsal and ventral armadillo cuticle defects. Furthermore, we found that activation of the Jun N-terminal kinase signaling pathway suppresses armadillo-associated defects. Jun N-terminal kinase signaling promotes dorsal closure, in part, by regulating decapentaplegic expression in the dorsal epidermis. We demonstrate that Wingless signaling is also required to activate decapentaplegic expression and to coordinate cell shape changes during dorsal closure. Together, these results demonstrate that MAP-Kinase and Wingless signaling cooperate in both the dorsal and ventral epidermis, and suggest that Wingless may activate both the Wingless and the Jun N-terminal kinase signaling cascades.  相似文献   

17.
Calcineurin is a conserved Ca2+/calmodulin-dependent protein phosphatase that plays a critical role in Ca(2+)-mediated signaling in many cells. Yeast cells lacking functional calcineurin (cna1 cna2 or cnb1 mutants) display growth defects under specific environmental conditions, for example, in the presence of high concentrations of Na+, Li+, Mn2+, or OH- but are indistinguishable from wild-type cells under standard culture conditions. To characterize regulatory pathways that may overlap with calcineurin, we performed a synthetic lethal screen to identify mutants that require calcineurin on standard growth media. The characterization of one such mutant, cnd1-8, is presented. The CND1 gene was cloned, and sequence analysis predicts that it encodes a novel protein 1,876 amino acids in length with multiple membrane-spanning domains. CND1 is identical to the gene identified previously as FKS1, ETG1, and CWH53, cnd1 mutants are sensitive to FK506 and cyclosporin A and exhibit slow growth that is improved by the addition of osmotic stabilizing agents. This osmotic agent-remedial growth defect and microscopic evidence of spontaneous cell lysis in cnd1 cultures suggest that cell integrity is compromised in these mutants. Mutations in the genes for yeast protein kinase C (pkc1) and a MAP kinase (mpk1/slt2) disrupt a Ca(2+)-dependent signaling pathway required to maintain a normal cell wall and cell integrity. We show that pkc1 and mpk1/slt2 growth defects are more severe in the absence of calcineurin function and less severe in the presence of a constitutively active form of calcineurin. These observations suggest that calcineurin and protein kinase C perform independent but physiologically related functions in yeast cells. We show that several mutants that lack a functional vacuolar H(+)-ATPase (vma) require calcineurin for vegetative growth. We discuss possible roles for calcineurin in regulating intracellular ion homeostasis and in maintaining cell integrity.  相似文献   

18.
In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD) have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK) signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB) phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.  相似文献   

19.
Bicuspid aortic valve (BAV) is the most common congenital cardiac anomaly in humans. Despite recent advances, the molecular basis of BAV development is poorly understood. Previously it has been shown that mutations in the Notch1 gene lead to BAV and valve calcification both in human and mice, and mice deficient in Gata5 or its downstream target Nos3 have been shown to display BAVs. Here we show that tissue-specific deletion of the gene encoding Activin Receptor Type I (Alk2 or Acvr1) in the cushion mesenchyme results in formation of aortic valve defects including BAV. These defects are largely due to a failure of normal development of the embryonic aortic valve leaflet precursor cushions in the outflow tract resulting in either a fused right- and non-coronary leaflet, or the presence of only a very small, rudimentary non-coronary leaflet. The surviving adult mutant mice display aortic stenosis with high frequency and occasional aortic valve insufficiency. The thickened aortic valve leaflets in such animals do not show changes in Bmp signaling activity, while Map kinase pathways are activated. Although dysfunction correlated with some pro-osteogenic differences in gene expression, neither calcification nor inflammation were detected in aortic valves of Alk2 mutants with stenosis. We conclude that signaling via Alk2 is required for appropriate aortic valve development in utero, and that defects in this process lead to indirect secondary complications later in life.  相似文献   

20.
Hopper NA 《Genetics》2006,173(1):163-175
Previous genetic analysis has shown that dos/soc-1/Gab1 functions positively in receptor tyrosine kinase (RTK)-stimulated Ras/Map kinase signaling through the recruitment of csw/ptp-2/Shp2. Using sensitized assays in Caenorhabditis elegans for let-23/Egfr and daf-2/InsR (insulin receptor-like) signaling, it is shown that soc-1/Gab1 inhibits phospholipase C-gamma (PLCgamma) and phosphatidylinositol 3'-kinase (PI3K)-mediated signaling. Furthermore, as well as stimulating Ras/Map kinase signaling, soc-1/Gab1 stimulates a poorly defined signaling pathway that represses class 2 daf-2 phenotypes. In addition, it is shown that SOC-1 binds the C-terminal SH3 domain of SEM-5. This binding is likely to be functional as the sem-5(n2195)G201R mutation, which disrupts SOC-1 binding, behaves in a qualitatively similar manner to a soc-1 null allele in all assays for let-23/Egfr and daf-2/InsR signaling that were examined. Further genetic analysis suggests that ptp-2/Shp2 mediates the negative function of soc-1/Gab1 in PI3K-mediated signaling, as well as the positive function in Ras/Map kinase signaling. Other effectors of soc-1/Gab1 are likely to inhibit PLCgamma-mediated signaling and stimulate the poorly defined signaling pathway that represses class 2 daf-2 phenotypes. Thus, the recruitment of soc-1/Gab1, and its effectors, into the RTK-signaling complex modifies the cellular response by enhancing Ras/Map kinase signaling while inhibiting PI3K and PLCgamma-mediated signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号