首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental high-throughput studies of protein-protein interactions are beginning to provide enough data for comprehensive computational studies. Today, about ten large data sets, each with thousands of interacting pairs, coarsely sample the interactions in fly, human, worm, and yeast. Another about 55,000 pairs of interacting proteins have been identified by more careful, detailed biochemical experiments. Most interactions are experimentally observed in prokaryotes and simple eukaryotes; very few interactions are observed in higher eukaryotes such as mammals. It is commonly assumed that pathways in mammals can be inferred through homology to model organisms, e.g. the experimental observation that two yeast proteins interact is transferred to infer that the two corresponding proteins in human also interact. Two pairs for which the interaction is conserved are often described as interologs. The goal of this investigation was a large-scale comprehensive analysis of such inferences, i.e. of the evolutionary conservation of interologs. Here, we introduced a novel score for measuring the overlap between protein-protein interaction data sets. This measure appeared to reflect the overall quality of the data and was the basis for our two surprising results from our large-scale analysis. Firstly, homology-based inferences of physical protein-protein interactions appeared far less successful than expected. In fact, such inferences were accurate only for extremely high levels of sequence similarity. Secondly, and most surprisingly, the identification of interacting partners through sequence similarity was significantly more reliable for protein pairs within the same organism than for pairs between species. Our analysis underlined that the discrepancies between different datasets are large, even when using the same type of experiment on the same organism. This reality considerably constrains the power of homology-based transfer of interactions. In particular, the experimental probing of interactions in distant model organisms has to be undertaken with some caution. More comprehensive images of protein-protein networks will require the combination of many high-throughput methods, including in silico inferences and predictions. http://www.rostlab.org/results/2006/ppi_homology/  相似文献   

2.
The superfamily of ribosome-inactivating proteins (RIPs) consists of toxins that catalytically inactivate ribosomes at a universally conserved region of the large ribosomal RNA. RIPs carry out a single N-glycosidation event that alters the binding site of the translational elongational factor eEF1A and causes a cessation of protein synthesis that leads to subsequent cell death. Maize RIP1 is a kernel-specific RIP with the unusual property of being produced as a zymogen, proRIP1. ProRIP1 accumulates during seed development and becomes active during germination when cellular proteases remove acidic residues from a central domain and both termini. These deletions also result in RIP activation in vitro. However, the effectiveness of RIP1 activity against target ribosomes remains species-dependent. To determine the potential efficiency of maize RIP1 as a plant defense protein, we used quantitative RNA gel blots to detect products of RIP activity against intact ribosomal substrates from various species. We determined the enzyme specificity of recombinant maize proRIP1 (rproRIP1), papain-activated rproRIP1 and MOD1 (an active deletion mutant of rproRIP1) against ribosomal substrates with differing levels of RIP sensitivity. The rproRIP1 had no detectable enzymatic activity against ribosomes from any of the species assayed. The papain-activated rproRIP1 was more active than MOD1 against ribosomes from either rabbit or the corn pathogen, Aspergillus flavus, but the difference was much more marked when rabbit ribosomes were used as a substrate. The papain-activated rproRIP1 was much more active against rabbit ribosomes than homologous Zea mays ribosomes and had no detectable effect on Escherichia coli ribosomes.  相似文献   

3.
Effective population size (Ne) controls both the rate of random genetic drift and the effectiveness of selection and migration, but it is difficult to estimate in nature. In particular, for species with overlapping generations, it is easier to estimate the effective number of breeders in one reproductive cycle (Nb) than Ne per generation. We empirically evaluated the relationship between life history and ratios of Ne, Nb and adult census size (N) using a recently developed model (agene) and published vital rates for 63 iteroparous animals and plants. Nb/Ne varied a surprising sixfold across species and, contrary to expectations, Nb was larger than Ne in over half the species. Up to two-thirds of the variance in Nb/Ne and up to half the variance in Ne/N was explained by just two life-history traits (age at maturity and adult lifespan) that have long interested both ecologists and evolutionary biologists. These results provide novel insights into, and demonstrate a close general linkage between, demographic and evolutionary processes across diverse taxa. For the first time, our results also make it possible to interpret rapidly accumulating estimates of Nb in the context of the rich body of evolutionary theory based on Ne per generation.  相似文献   

4.
5.
6.
7.
8.
Animals produce a wide array of sounds with highly variable acoustic structures. It is possible to understand the causes and consequences of this variation across taxa with phylogenetic comparative analyses. Acoustic and evolutionary analyses are rapidly increasing in sophistication such that choosing appropriate acoustic and evolutionary approaches is increasingly difficult. However, the correct choice of analysis can have profound effects on output and evolutionary inferences. Here, we identify and address some of the challenges for this growing field by providing a roadmap for quantifying and comparing sound in a phylogenetic context for researchers with a broad range of scientific backgrounds. Sound, as a continuous, multidimensional trait can be particularly challenging to measure because it can be hard to identify variables that can be compared across taxa and it is also no small feat to process and analyse the resulting high-dimensional acoustic data using approaches that are appropriate for subsequent evolutionary analysis. Additionally, terminological inconsistencies and the role of learning in the development of acoustic traits need to be considered. Phylogenetic comparative analyses also have their own sets of caveats to consider. We provide a set of recommendations for delimiting acoustic signals into discrete, comparable acoustic units. We also present a three-stage workflow for extracting relevant acoustic data, including options for multivariate analyses and dimensionality reduction that is compatible with phylogenetic comparative analysis. We then summarize available phylogenetic comparative approaches and how they have been used in comparative bioacoustics, and address the limitations of comparative analyses with behavioural data. Lastly, we recommend how to apply these methods to acoustic data across a range of study systems. In this way, we provide an integrated framework to aid in quantitative analysis of cross-taxa variation in animal sounds for comparative phylogenetic analysis. In addition, we advocate the standardization of acoustic terminology across disciplines and taxa, adoption of automated methods for acoustic feature extraction, and establishment of strong data archival practices for acoustic recordings and data analyses. Combining such practices with our proposed workflow will greatly advance the reproducibility, biological interpretation, and longevity of comparative bioacoustic studies.  相似文献   

9.
Some marine sponges harbor dense and phylogenetically complex microbial communities [high microbial abundance (HMA) sponges] whereas others contain only few and less diverse microorganisms [low microbial abundance (LMA) sponges]. We focused on the phylum Chloroflexi that frequently occurs in sponges to investigate the different associations with three HMA and three LMA sponges from New Zealand. By applying a range of microscopical and molecular techniques a clear dichotomy between HMA and LMA sponges was observed: Chloroflexi bacteria were more abundant and diverse in HMA than in LMA sponges. Moreover, different HMA sponges contain similar Chloroflexi communities whereas LMA sponges harbor different and more variable communities which partly resemble Chloroflexi seawater communities. A comprehensive phylogenetic analysis of our own and publicly available sponge-derived Chloroflexi 16S rRNA gene sequences (>?780 sequences) revealed the enormous diversity of this phylum within sponges including 29 sponge-specific and sponge-coral clusters (SSC/SCC) as well as a 'supercluster' consisting of >?250 sponge-derived and a single nonsponge-derived 16S rRNA gene sequence. Interestingly, the majority of sequences obtained from HMA sponges, but only a few from LMA sponges, fell into SSC/SCC clusters. This indicates a much more specific association of Chloroflexi bacteria with HMA sponges and suggests an ecologically important role for these prominent bacteria.  相似文献   

10.
As with other lipid modifications of proteins, prenylation now appears to be critically important in the regulation of protein function. Recent research has led to an explosion of information concerning prenylation signals, prenyl transferase enzymes and the role of prenylation in protein-membrane interactions. Experiments have examined the role of prenylation in protein function and the results suggest that protein prenylation may be involved in facilitating proper subcellular localization, promoting protein-protein and protein-membrane interactions and regulating protein function.  相似文献   

11.
12.
A major goal of community ecology is to identify the patterns of species associations and the processes that shape them. Arboreal ants are extremely diverse and abundant, making them an interesting and valuable group for tackling this issue. Numerous studies have used observational data of species co‐occurrence patterns to infer underlying assembly processes, but the complexity of these communities has resulted in few solid conclusions. This study takes advantage of an observational dataset that is unusually well‐structured with respect to habitat attributes (tree species, tree sizes, and vegetation structure), to disentangle different factors influencing community organization. In particular, this study assesses the potential role of interspecific competition and habitat selection on the distribution patterns of an arboreal ant community by incorporating habitat attributes into the co‐occurrence analyses. These findings are then contrasted against species traits, to explore functional explanations for the identified community patterns. We ran a suite of null models, first accounting only for the species incidence in the community and later incorporating habitat attributes in the null models. We performed analyses with all the species in the community and then with only the most common species using both a matrix‐level approach and a pairwise‐level approach. The co‐occurrence patterns did not differ from randomness in the matrix‐level approach accounting for all ant species in the community. However, a segregated pattern was detected for the most common ant species. Moreover, with the pairwise approach, we found a significant number of negative and positive pairs of species associations. Most of the segregated associations appear to be explained by competitive interactions between species, not habitat affiliations. This was supported by comparisons of species traits for significantly associated pairs. These results suggest that competition is the most important influence on the distribution patterns of arboreal ants within the focal community. Habitat attributes, in contrast, showed no significant influence on the matrix‐wide results and affected only a few associations. In addition, the segregated pairs shared more biological characteristic in common than the aggregated and random ones.  相似文献   

13.
14.
Identifying mechanisms of pathogen transmission is critical to controlling disease. Social organization should influence contacts among individuals and thus the distribution and spread of disease within a population. Molecular genetic markers can be used to elucidate mechanisms of disease transmission in wildlife populations without undertaking detailed observational studies to determine probable contact rates. Estimates of genealogical relationships within a bovine tuberculosis-infected white-tailed deer (Odocoileus virginianus) population indicated that infected deer were significantly more closely related than non-infected deer suggesting that contact within family groups was a significant mechanism of disease transmission. Results demonstrate that epidemiological models should incorporate aspects of host ecology likely to affect the probability of disease transmission.  相似文献   

15.
16.
17.
《Fungal Ecology》2008,1(1):40-48
The homokaryotic stage of the basidiomycete lifecycle is generally considered to be short lived, although there is little experimental evidence relating to their longevity in the field. The vast majority of studies on basidiomycete ecology have used only heterokaryons. The few investigations comparing related homokaryons and heterokaryons have revealed no overall trend in differences of extension rate, wood decay or competitive ability. For a rare species the homokaryotic phase may be of greater importance than in common species as it is likely to last longer. Hericium coralloides, a rare wood decay basidiomycete, was used to investigate differences between homokaryons and heterokaryons in terms of extension rate and combative ability. Fifteen homokaryons from three fruit bodies and five heterokaryons (obtained by fruit body tissue isolation) were compared at 5–35 °C on malt agar for extension rate, and paired against heterokaryons of 13 wood decay species to assess combative ability. Homokaryons were paired to create ten artificial heterokaryons whose extension rate at 10 and 20 °C was compared to parental rates. There were some significant differences in extension rates between homokaryons and natural heterokaryons, between homokaryons and heterokaryons created artificially from homokaryons, and between homokaryons from different fruit bodies, but no consistent trends. Homokaryons proved more combative than heterokaryons, which was assessed quantitatively as well as qualitatively using a scoring system for outcome of each pairing. Results are discussed in relation to previous findings and in an ecological context.  相似文献   

18.
19.
20.
Chickpea has been considered as a restrictive host for nodulation by rhizobia. However, recent studies have reported that several Mesorhizobium species may effectively nodulate chickpea. With the purpose of investigating the evolutionary relationships between these different species with the ability of nodulating the same host, we analysed 21 Portuguese chickpea rhizobial isolates. Symbiosis genes nifH and nodC were sequenced and used for phylogenetic studies. Symbiotic effectiveness was determined to evaluate its relationship with symbiosis genes. The comparison of 16S rRNA gene-based phylogeny with the phylogenies based on symbiosis genes revealed evidence of lateral transfer of symbiosis genes across different species. Chickpea is confirmed as a nonpromiscuous host. Although chickpea is nodulated by many different species, they share common symbiosis genes, suggesting recognition of only a few Nod factors by chickpea. Our results suggest that sequencing of nifH or nodC genes can be used for rapid detection of chickpea mesorhizobia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号