首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transcellular transport in epithelial cells plays an important role in providing such physiological functions as excretion of cytotoxic substances or reabsorption of metabolites useful for the body life activity. These functions have been shown to be performed by the mechanisms—symport, antiport, ion pumps, and channels—that often function cooperatively. Models for kinetic peculiarities of the substrate transport with the aid of the above mechanisms are widely described in the literature. Much less attention is paid to modeling of cooperative activity of transporters that have different transport mechanisms. In this work we propose a mathematical model for flux coupling of three transporters—the ion pump, symporter, and antiporter as well as of two substrates, one of which (A) can be transported simultaneously by the symport and antiport mechanisms, while the other (B)—only by the latter mechanism. Analysis of the model has shown that for the pair of substrates (A and B) the flux coupling becomes possible if the following conditions are met: (1) the substrate A flux into the internal cell volume using the symport mechanism is to exceed its antiporter-realized flux in the opposite direction; (2) probability of reorientation from one side of membrane to the other side for the antiporter loaded with the substrate is to be essentially higher than that for empty transporter. The proposed model can be used for comparing efficiency both of excretion and of reabsorption of cell metabolites in representatives of different taxa.  相似文献   

2.
The SLC26/SulP (solute carrier/sulphate transporter) proteins are a ubiquitous superfamily of secondary anion transporters. Prior studies have focused almost exclusively on eukaryotic members and bacterial members are frequently classified as sulphate transporters based on their homology with SulP proteins from plants and fungi. In this study we have examined the function and physiological role of the Escherichia coli Slc26 homologue, YchM. We show that there is a clear YchM‐dependent growth defect when succinate is used as the sole carbon source. Using an in vivo succinate transport assay, we show that YchM is the sole aerobic succinate transporter active at acidic pH. We demonstrate that YchM can also transport other C4‐dicarboxylic acids and that its substrate specificity differs from the well‐characterized succinate transporter, DctA. Accordingly ychM was re‐designated dauA (dicarboxylic acid uptake system A). Finally, our data suggest that DauA is a protein with transport and regulation activities. This is the first report that a SLC26/SulP protein acts as a C4‐dicarboxylic acid transporter and an unexpected new function for a prokaryotic member of this transporter family.  相似文献   

3.
The melibiose permease of Salmonella typhimurium (MelBSt) catalyzes the stoichiometric symport of galactopyranoside with a cation (H+, Li+, or Na+) and is a prototype for Na+-coupled major facilitator superfamily (MFS) transporters presenting from bacteria to mammals. X-ray crystal structures of MelBSt have revealed the molecular recognition mechanism for sugar binding; however, understanding of the cation site and symport mechanism is still vague. To further investigate the transport mechanism and conformational dynamics of MelBSt, we generated a complete single-Cys library containing 476 unique mutants by placing a Cys at each position on a functional Cys-less background. Surprisingly, 105 mutants (22%) exhibit poor transport activities (<15% of Cys-less transport), although the expression levels of most mutants were comparable to that of the control. The affected positions are distributed throughout the protein. Helices I and X and transmembrane residues Asp and Tyr are most affected by cysteine replacement, while helix IX, the cytoplasmic middle-loop, and C-terminal tail are least affected. Single-Cys replacements at the major sugar-binding positions (K18, D19, D124, W128, R149, and W342) or at positions important for cation binding (D55, N58, D59, and T121) abolished the Na+-coupled active transport, as expected. We mapped 50 loss-of-function mutants outside of these substrate-binding sites that suffered from defects in protein expression/stability or conformational dynamics. This complete Cys-scanning mutagenesis study indicates that MelBSt is highly susceptible to single-Cys mutations, and this library will be a useful tool for further structural and functional studies to gain insights into the cation-coupled symport mechanism for Na+-coupled MFS transporters.  相似文献   

4.
The AzgA purine/H+ symporter of Aspergillus nidulans is the founding member of a functionally and phylogenetically distinct transporter family present in fungi, bacteria and plants. Here a valid AzgA topological model is built based on the crystal structure of the Escherichia coli uracil transporter UraA, a member of the nucleobase‐ascorbate transporter (NAT/NCS2) family. The model consists of 14 transmembrane, mostly α‐helical, segments (TMSs) and cytoplasmic N‐ and C‐tails. A distinct compact core of 8 TMSs, made of two intertwined inverted repeats (TMSs 1–4 and 8–11), is topologically distinct from a flexible domain (TMSs 5–7 and 12–14). A putative substrate binding cavity is visible between the core and the gate domains. Substrate docking, molecular dynamics and mutational analysis identified several residues critical for purine binding and/or transport in TMS3, TMS8 and TMS10. Among these, Asn131 (TMS3), Asp339 (TMS8) and Glu394 (TMS10) are proposed to directly interact with substrates, while Asp342 (TMS8) might be involved in subsequent substrate translocation, through H+ binding and symport. Thus, AzgA and other NAT transporters use topologically similar TMSs and amino acid residues for substrate binding and transport, which in turn implies that AzgA‐like proteins constitute a distant subgroup of the ubiquitous NAT family.  相似文献   

5.
P1B-type ATPases transport a variety of metals (Cd2+, Zn2+, Pb2+, Co2+, Cu2+, Ag+, Cu+) across biomembranes. Characteristic sequences CP[C/H/S] in transmembrane fragment H6 were observed in the putative transporting metal site of the founding members of this subfamily (initially named CPx-ATPases). In spite of their importance for metal homeostasis and biotolerance, their mechanisms of ion selectivity are not understood. Studies of better-characterized PII-type ATPases (Ca-ATPase and Na,K-ATPase) have identified three transmembrane segments that participate in ion binding and transport. Testing the hypothesis that metal specificity is determined by conserved amino acids located in the equivalent transmembrane segments of P1B-type ATPases (H6, H7, and H8), 234 P1B-ATPase protein sequences were analyzed. This showed that although H6 contains characteristic CPX or XPC sequences, conserved amino acids in H7 and H8 provide signature sequences that predict the metal selectivity in each of five P1B-ATPase subgroups identified. These invariant amino acids contain diverse side chains (thiol, hydroxyl, carbonyl, amide, imidazolium) that can participate in transient metal coordination during transport and consequently determine the particular metal selectivity of each enzyme. Each subgroup shares additional structural characteristics such as the presence (or absence) of particular amino-terminal metal-binding domains and the number of putative transmembrane segments. These differences suggest unique functional characteristics for each subgroup in addition to their particular metal specificity.  相似文献   

6.
A cDNA coding for a vitamin H (biotin) transport protein from Arabidopsis was identified by genetic complementation of a biotin uptake-deficient yeast mutant. Vitamin H transport by this protein was sensitive to the SH-group inhibitor p-chloromercuribenzene sulfonic acid (PCMBS) and to the uncoupler carbonyl cyanide-m-chlorophenylhydrazone (CCCP), suggesting an energy-dependent biotin-H+ symport mechanism. The transport activity could contribute to the so-far uncharacterized plant sucrose-H+ symporter AtSUC5 which mediates the energy-dependent transport of biotin and sucrose, and restores growth of the biotin transport-deficient yeast mutant on medium with low biotin concentrations. Functional comparison of the AtSUC5 transporter with previously characterized plant sucrose or monosaccharide transporters revealed that biotin transport may be a general and specific property of all plant sucrose transporters (sucrose/biotin-H+ symporters). This first report on a transporter with dual substrate specificity for two structurally unrelated molecules has a major impact on general thinking concerning the specificity of membrane transporters. The physiological relevance of this finding is discussed.  相似文献   

7.
Salla disease and infantile sialic acid storage disorder are human diseases caused by loss of function of sialin, a lysosomal transporter that mediates H+-coupled symport of acidic sugars N-acetylneuraminic acid and glucuronic acid out of lysosomes. Along with the closely related vesicular glutamate transporters, sialin belongs to the SLC17 transporter family. Despite their critical role in health and disease, these proteins remain poorly understood both structurally and mechanistically. Here, we use substituted cysteine accessibility screening and radiotracer flux assays to evaluate experimentally a computationally generated three-dimensional structure model of sialin. According to this model, sialin consists of 12 transmembrane helices (TMs) with an overall architecture similar to that of the distantly related glycerol 3-phosphate transporter GlpT. We show that TM4 in sialin lines a large aqueous cavity that forms a part of the substrate permeation pathway and demonstrate substrate-induced alterations in accessibility of substituted cysteine residues in TM4. In addition, we demonstrate that one mutant, F179C, has a dramatically different effect on the apparent affinity and transport rate for N-acetylneuraminic acid and glucuronic acid, suggesting that it may be directly involved in substrate recognition and/or translocation. These findings offer a basis for further defining the transport mechanism of sialin and other SLC17 family members.  相似文献   

8.
Solute:sodium symporters (SSSs) transport vital molecules across the plasma membrane of all living organisms. vSGLT, the Na(+)/galactose transporter of Vibrio parahemeolyticus, is the only SSS for which high resolution structural information is available, revealing a LeuT-like fold and a Na(+)-binding site analogous to the Na2 site of LeuT. Whereas the core transmembrane segments (TMs) of SSSs share high structural similarity with other transporters of LeuT-like fold, TM1 does not correspond to any TM in those structural homologs and was only resolved for the backbone atoms in the initial vSGLT structure (Protein Data Bank code 3DH4). To assess the role of TM1 in Na(+)-coupled substrate symport by the SSSs, here we have studied the role of a conserved residue in TM1 by computational modeling in conjunction with radiotracer transport and binding studies. Based on our sequence alignment and much topological data for homologous PutP, the Na(+)/proline transporter, we have simulated a series of vSGLT models with shifted TM1 residue assignments. We show that in two converged vSGLT models that retained the original TM1 backbone conformation, a conserved residue, Tyr-19, is associated with the Na(+) binding interaction network. In silico and in vitro mutagenesis of homologous Tyr-14 in PutP revealed the involvement of this conserved residue in Na(+)-dependent substrate binding and transport. Thus, our combined computational and experimental data provide the first clues about the importance of a conserved residue in TM1, a unique TM in the proteins with LeuT-like fold, in the Na(+)-coupled symport mechanism of SSSs.  相似文献   

9.
Sulfate assimilation and glutathione synthesis were traditionally believed to be differentially compartmentalised in C4 plants with the synthesis of cysteine and glutathione restricted to bundle sheath and mesophyll cells, respectively. Recent studies, however, showed that although ATP sulfurylase and adenosine 5′ phosphosulfate reductase, the key enzymes of sulfate assimilation, are localised exclusively in bundle sheath in maize and other C4 monocot species, this is not true for the dicot C4 species of Flaveria. On the other hand, enzymes of glutathione biosynthesis were demonstrated to be active in both types of maize cells. Therefore, in this review the recent findings on compartmentation of sulfate assimilation and glutathione metabolism in C4 plants will be summarised and the consequences for our understanding of sulfate metabolism and C4 photosynthesis will be discussed.  相似文献   

10.
Transport of lactate, pyruvate, and other monocarboxylates across the sarcolemma of skeletal and cardiac myocytes occurs via passive diffusion and by monocarboxylate transporter (MCT) mediated transport. The flux of lactate and protons through the MCT plays an important role in muscle energy metabolism during rest and exercise and in pH regulation during exercise. The MCT isoforms 1 and 4 are the major isoforms of this transporter in skeletal and cardiac muscle. The current consensus on the mechanism of these transporters, based on experimental measurements of labeled lactate fluxes, is that monocarboxylate-proton symport occurs via a rapid-equilibrium ordered mechanism with proton binding followed by monocarboxylate binding. This study tests ordered and random mechanisms by fitting experimental measurements of tracer exchange fluxes from MCT1 and MCT4 isoforms to theoretical predictions derived using relationships between one-way fluxes and thermodynamic forces. Analysis shows that: 1), the available kinetic data are insufficient to distinguish between a rapid-equilibrium ordered and a rapid-equilibrium random-binding model for MCT4; 2), MCT1 has a higher affinity to lactate than does MCT4; 3), the theoretical conditions for the so-called trans-acceleration phenomenon (e.g., increased tracer efflux from a vesicle caused by increased substrate concentration outside the vesicle) do not necessarily require the rate constant for the lactate and proton bound transporter to reorient across the membrane to be higher than that for the unbound transporter; and finally, 4), based on model analysis, additional experiments are proposed to be able to distinguish between ordered and random-binding mechanisms.  相似文献   

11.
Overexpression of the yeast Pdr5 ATP-binding cassette transporter leads to pleiotropic drug resistance to a variety of structurally unrelated cytotoxic compounds. To identify Pdr5 residues involved in substrate recognition and/or drug transport, we used a combination of random in vitro mutagenesis and phenotypic screening to isolate novel mutant Pdr5 transporters with altered substrate specificity. A plasmid library containing randomly mutagenized PDR5 genes was transformed into appropriate drug-sensitive yeast cells followed by phenotypic selection of Pdr5 mutants. Selected mutant Pdr5 transporters were analyzed with respect to their expression levels, subcellular localization, drug resistance profiles to cycloheximide, rhodamines, antifungal azoles, steroids, and sensitivity to the inhibitor FK506. DNA sequencing of six PDR5 mutant genes identified amino acids important for substrate recognition, drug transport, and specific inhibition of the Pdr5 transporter. Mutations were found in each nucleotide-binding domain, the transmembrane domain 10, and, most surprisingly, even in predicted extracellular hydrophilic loops. At least some point mutations identified appear to influence folding of Pdr5, suggesting that the folded structure is a major substrate specificity determinant. Surprisingly, a S1360F exchange in transmembrane domain 10 not only caused limited substrate specificity, but also abolished Pdr5 susceptibility to inhibition by the immunosuppressant FK506. This is the first report of a mutation in a yeast ATP-binding cassette transporter that allows for the functional separation of substrate transport and inhibitor susceptibility.  相似文献   

12.
Glutamate is the major excitatory neurotransmitter in the mammalian CNS. The spatiotemporal profile of the glutamate concentration in the synapse is critical for excitatory synaptic signalling. The control of this spatiotemporal concentration profile requires the presence of large numbers of synaptically localized glutamate transporters that remove pre-synaptically released glutamate by uptake into neurons and adjacent glia cells. These glutamate transporters are electrogenic and utilize energy stored in the transmembrane potential and the Na+/K+-ion concentration gradients to accumulate glutamate in the cell. This review focuses on the kinetic and electrogenic properties of glutamate transporters, as well as on the molecular mechanism of transport. Recent results are discussed that demonstrate the multistep nature of the transporter reaction cycle. Results from pre-steady-state kinetic experiments suggest that at least four of the individual transporter reaction steps are electrogenic, including reactions associated with the glutamate-dependent transporter halfcycle. Furthermore, the kinetic similarities and differences between some of the glutamate transporter subtypes and splice variants are discussed. A molecular mechanism of glutamate transport is presented that accounts for most of the available kinetic data. Finally, we discuss how synaptic glutamate transporters impact on glutamate receptor activity and how transporters may shape excitatory synaptic transmission.  相似文献   

13.
Transcellular transport in epithelial cells plays an important role in providing such physiological functions as excretion of cytotoxic substances or reabsorption of metabolites useful for the body life activity. These functions have been shown to be performed by the mechanisms - symport, antiport, ion pumps, and channels - that often function cooperatively. Kinetic models of the substrate transport with the aid of the above mechanisms are widely described in the literature. Much less attention is paid to modeling of cooperative activity of transporters that have different transport mechanisms. In this work we propose a mathematical model for flux coupling of three transporters - the ion pump, symporter, and antiporter as well as of two substrates, one of which (A) can be transported simultaneously by the symport and antiport mechanisms, while the other (B) - only by the latter mechanisms. Analysis of the model has shown that for the pair of substrates (A and B) the flux coupling becomes possible if the following conditions are met: (1) the substrate A flux into the internal cell volume using the symport mechanism is to exceed its antiporter-realized flux in the opposite direction; (2) probability of reorientation from one side of membrane to the other side for the antiporter loaded with the substrate is to be essentially higher than that for empty transporter. The proposed model can be used for comparing efficiency both of excretion and of reabsorption of cell metabolites in representatives of different taxa.  相似文献   

14.
The SLC13 transporter family, whose members play key physiological roles in the regulation of fatty acid synthesis, adiposity, insulin resistance, and other processes, catalyzes the transport of Krebs cycle intermediates and sulfate across the plasma membrane of mammalian cells. SLC13 transporters are part of the divalent anion:Na+ symporter (DASS) family that includes several well-characterized bacterial members. Despite sharing significant sequence similarity, the functional characteristics of DASS family members differ with regard to their substrate and coupling ion dependence. The publication of a high resolution structure of dimer VcINDY, a bacterial DASS family member, provides crucial structural insight into this transporter family. However, marrying this structural insight to the current functional understanding of this family also demands a comprehensive analysis of the transporter’s functional properties. To this end, we purified VcINDY, reconstituted it into liposomes, and determined its basic functional characteristics. Our data demonstrate that VcINDY is a high affinity, Na+-dependent transporter with a preference for C4- and C5-dicarboxylates. Transport of the model substrate, succinate, is highly pH dependent, consistent with VcINDY strongly preferring the substrate’s dianionic form. VcINDY transport is electrogenic with succinate coupled to the transport of three or more Na+ ions. In contrast to succinate, citrate, bound in the VcINDY crystal structure (in an inward-facing conformation), seems to interact only weakly with the transporter in vitro. These transport properties together provide a functional framework for future experimental and computational examinations of the VcINDY transport mechanism.  相似文献   

15.
We describe the long-term effects of a CO2 exhalation, created more than 70 years ago, on a natural C4 dominated sub-tropical grassland in terms of ecosystem structure and functioning. We tested whether long-term CO2 enrichment changes the competitive balance between plants with C3 and C4 photosynthetic pathways and how CO2 enrichment has affected species composition, plant growth responses, leaf properties and soil nutrient, carbon and water dynamics. Long-term effects of elevated CO2 on plant community composition and system processes in this sub-tropical grassland indicate very subtle changes in ecosystem functioning and no changes in species composition and dominance which could be ascribed to elevated CO2 alone. Species compositional data and soil δ13C isotopic evidence suggest no detectable effect of CO2 enrichment on C3:C4 plant mixtures and individual species dominance. Contrary to many general predictions C3 grasses did not become more abundant and C3 shrubs and trees did not invade the site. No season length stimulation of plant growth was found even after 5 years of exposure to CO2 concentrations averaging 610 μmol mol−1. Leaf properties such as total N decreased in the C3 but not C4 grass under elevated CO2 while total non-structural carbohydrate accumulation was not affected. Elevated CO2 possibly lead to increased end-of-season soil water contents and this result agrees with earlier studies despite the topographic water gradient being a confounding problem at our research site. Long-term CO2 enrichment also had little effect on soil carbon storage with no detectable changes in soil organic matter found. There were indications that potential soil respiration and N mineralization rates could be higher in soils close to the CO2 source. The conservative response of this grassland suggests that many of the reported effects of elevated CO2 on similar ecosystems could be short duration experimental artefacts that disappear under long-term elevated CO2 conditions.  相似文献   

16.
Chimeric transporters were constructed in which the predicted external loops of the serotonin transporter (SERT) were replaced one at a time with a corresponding sequence from the norepinephrine transporter (NET). All of the chimeric transporters were expressed at levels equal to or greater than those of wild type SERT, but the transport and binding activity of the mutants varied greatly. In particular, mutants in which the NET sequence replaced external loops 4 or 6 of SERT had transport activity 5% or less than that of wild type, and the loop 5 replacement was essentially inactive. In some of these mutants, binding of a high affinity cocaine analog was less affected than transport, suggesting that the mutation had less effect on the initial binding steps in transport than on subsequent conformational changes. The more severely affected mutants also displayed an altered response to Na(+). In contrast to the dramatic reduction in transport and binding, the specificity of ligand binding was essentially unchanged. Chimeric transporters did not gain affinity for dopamine, a NET substrate, or desipramine, an inhibitor, at the expense of affinity for serotonin or paroxetine, a selective SERT inhibitor. The results suggest that external loops are not the primary determinants of substrate and inhibitor binding sites. However, they are not merely passive structures connecting transmembrane segments but rather active elements responsible for maintaining the stability and conformational flexibility of the transporter.  相似文献   

17.
Transmembrane transport is an essential component of the cell life. Many genes encoding known or putative transport proteins are found in bacterial genomes. In most cases their substrate specificity is not experimentally determined and only approximately predicted by comparative genomic analysis. Even less is known about the 3D structure of transporters. Nevertheless, the published experimental data demonstrate that channel-forming residues determine the substrate specificity of secondary transporters and analysis of these residues would provide better understanding of the transport mechanism. We developed a simple computational method for identification of channel-forming residues in transporter sequences. It is based on the analysis of amino acids frequencies in bacterial secondary transporters. We applied this method to a variety of transmembrane proteins with resolved 3D structure. The predictions are in sufficiently good agreement with the real protein structure.  相似文献   

18.
Both lower and higher plants have been shown to possess efficient transport systems for the uptake of sugars across the plasmalemma. Genes encoding transport proteins for both mono- and disaccharides have been cloned recently. The main cloning strategies — differential screening, complementation cloning in Saccharomyces cerevisiae, and heterologous screening — are briefly summarized. The relationship of plant sugar transporters to a superfamily of more than 50 uni-, sym-, and antiporters cloned so far is discussed. Various possibilities for heterologous expression (in Schizosaccharomyces pombe, Saccharomyces cerevisiae, Xenopus oocytes) of plant sugar transporters are described and compared. Eight D-glucose transporters (from yeast to Arabidopsis to man) only possess 7% identical amino acids. First site-directed mutations of the Chlorella HUP1 transporter indicate that at least transmembrane helices 5, 7 and 11 line the D-glucose specific path through the membrane. The genomic structures of two plant transporters are outlined; the glycosylation of transport proteins as well as their tissue specificity is discussed.  相似文献   

19.
Fructosyl peptide oxidase is a flavoenzyme that catalyzes the oxidative deglycation of N-(1-deoxyfructosyl)-Val-His, a model compound of hemoglobin (Hb)A1C. To develop an enzymatic method for the measurement of HbA1C, we screened for a proper protease using N-(1-deoxyfructosyl)-hexapeptide as a substrate. Several proteases, including Neutral protease from Bacillus polymyxa, were found to release N-(1-deoxyfructosyl)-Val-His efficiently, however no protease was found to release N-(1-deoxyfructosyl)-Val. Neutral protease also digested HbA1C to release N-(1-deoxyfructosyl)-Val-His, and then the fructosyl peptide was detected using fructosyl peptide oxidase. The linear relationship was observed between the concentration of HbA1C and the absorbancy of fructosyl peptide oxidase reaction, hence this new method is a practical means for measuring HbA1C.  相似文献   

20.
Barbehenn RV  Karowe DN  Chen Z 《Oecologia》2004,140(1):96-103
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号