首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iida K  Akashi H 《Gene》2000,261(1):93-105
Natural selection appears to discriminate among synonymous codons to enhance translational efficiency in a wide range of prokaryotes and eukaryotes. Codon bias is strongly related to gene expression levels in these species. In addition, between-gene variation in silent DNA divergence is inversely correlated with codon bias. However, in mammals, between-gene comparisons are complicated by distinctive nucleotide-content bias (isochores) throughout the genome. In this study, we attempted to identify translational selection by analyzing the DNA sequences of alternatively spliced genes in humans and in Drosophila melanogaster. Among codons in an alternatively spliced gene, those in constitutively expressed exons are translated more often than those in alternatively spliced exons. Thus, translational selection should act more strongly to bias codon usage and reduce silent divergence in constitutive than in alternative exons. By controlling for regional forces affecting base-composition evolution, this within-gene comparison makes it possible to detect codon selection at synonymous sites in mammals. We found that GC-ending codons are more abundant in constitutive than alternatively spliced exons in both Drosophila and humans. Contrary to our expectation, however, silent DNA divergence between mammalian species is higher in constitutive than in alternative exons.  相似文献   

2.
H. Akashi 《Genetics》1995,139(2):1067-1076
Patterns of codon usage and ``silent'''' DNA divergence suggest that natural selection discriminates among synonymous codons in Drosophila. ``Preferred'''' codons are consistently found in higher frequencies within their synonymous families in Drosophila melanogaster genes. This suggests a simple model of silent DNA evolution where natural selection favors mutations from unpreferred to preferred codons (preferred changes). Changes in the opposite direction, from preferred to unpreferred synonymous codons (unpreferred changes), are selected against. Here, selection on synonymous DNA mutations is investigated by comparing the evolutionary dynamics of these two categories of silent DNA changes. Sequences from outgroups are used to determine the direction of synonymous DNA changes within and between D. melanogaster and Drosophila simulans for five genes. Population genetics theory shows that differences in the fitness effect of mutations can be inferred from the comparison of ratios of polymorphism to divergence. Unpreferred changes show a significantly higher ratio of polymorphism to divergence than preferred changes in the D. simulans lineage, confirming the action of selection at silent sites. An excess of unpreferred fixations in 28 genes suggests a relaxation of selection on synonymous mutations in D. melanogaster. Estimates of selection coefficients for synonymous mutations (3.6 <|N(e)s| < 1.3) in D. simulans are consistent with the reduced efficacy of natural selection (|N(e)s| < 1) in the three- to sixfold smaller effective population size of D. melanogaster. Synonymous DNA changes appear to be a prevalent class of weakly selected mutations in Drosophila.  相似文献   

3.
We compared levels of sequence divergence between fourfold synonymous coding sites and noncoding sites from the intergenic and intronic regions of the Plasmodium falciparum and Plasmodium reichenowi genomes. We observed significant differences in the level of divergence between these classes of silent sites. Fourfold synonymous coding sites exhibited the highest level of sequence divergence, followed by introns, and then intergenic sequences. This pattern of relative divergence rates has been observed in primate genomes but was unexpected in Plasmodium due to a paucity of variation at silent sites in P. falciparum and the corollary hypothesis that silent sites in this genome may be subject to atypical selective constraints. Exclusion of hypermutable CpG dinucleotides reduces the divergence level of synonymous coding sites to that of intergenic sites but does not diminish the significantly higher divergence level of introns relative to intergenic sites. A greater than expected incidence of CpG dinucleotides in intergenic regions less than 500 bp from genes may indicate selective maintenance of regulatory motifs containing CpGs. Divergence rates of different classes of silent sites in these Plasmodium genomes are determined by a combination of mutational and selective pressures.  相似文献   

4.
Patterns of codon bias in Drosophila suggest that silent mutations can be classified into two types: unpreferred (slightly deleterious) and preferred (slightly beneficial). Results of previous analyses of polymorphism and divergence in Drosophila simulans were interpreted as supporting a mutation-selection-drift model in which slightly deleterious, silent mutants make significantly greater contributions to polymorphism than to divergence. Frequencies of unpreferred polymorphisms were inferred to be lower than frequencies of other silent polymorphisms. Here, I analyzed additional D. simulans data to reevaluate the support for these ideas. I found that D. simulans has fixed more unpreferred than preferred mutations, suggesting that this lineage has not been at mutation-selection-drift equilibrium at silent sites. Frequencies of polarized unpreferred polymorphisms are not skewed toward rare alleles. However, frequencies of unpolarized unpreferred codons are lower in high-bias genes than in low-bias genes. This supports the idea that unpreferred codons are borderline deleterious mutations. Purifying selection on silent sites appears to be stronger at twofold-degenerate codons than at fourfold-degenerate codons. Finally, I found that X-linked polymorphisms occur at a higher average frequency than polymorphisms on chromosome arm 3R, even though an average X-linked site is significantly less likely to be polymorphic than an average site on 3R. This result supports a previous analysis of D. simulans indicating different population genetics of X-linked versus autosomal mutations.  相似文献   

5.
Summary The nature and extent of DNA sequence divergence between homologous proteincoding genes fromEscherichia coli andSalmonella typhimurium have been examined. The degree of divergence varies greatly among genes at both synonymous (silent) and nonsynonymous sites. Much of the variation in silent substitution rates can be explained by natural selection on synonymous codon usage, varying in intensity with gene expression level. Silent substitution rates also vary significantly with chromosomal location, with genes nearoriC having lower divergence. Certain genes have been examined in more detail. In particular, the duplicate genes encoding elongation factor Tu,tufA andtufB, fromS. typhimurium have been compared to theirE. coli homologues. As expected these very highly expressed genes have high codon usage bias and have diverged very little between the two species. Interestingly, these genes, which are widely spaced on the bacterial chromosome, also appear to be undergoing concerted evolution, i.e., there has been exchange between the loci subsequent to the divergence of the two species.Presented at the NATO Advanced Research Workshop on Genome Organization and Evolution, held in Spetses, Greece, September 1990  相似文献   

6.
Comparisons of replacement to silent divergence have been used in a variety of studies aimed at detecting selection. Here, such comparisons are shown to be very sensitive to the pattern of rate variation in replacement sites. Saturation may play an important role even at surprisingly low levels of divergence if the substitution rate varies across replacement sites. For example, saturation in replacement sites may be of importance in the evolution of the HIV-1 envelope gene. However, the pattern of saturation in replacement and silent sites may, in itself, provide valuable insight into the causes of DNA evolution. 210 DNA sequences from 15 different loci/systematic groups are analyzed, and evidence for positive selection is demonstrated in at least one of these data sets, through an analysis of the distribution of substitution rates along the sequence.  相似文献   

7.
N G Smith  L D Hurst 《Genetics》1999,153(3):1395-1402
Nonsynonymous substitutions in DNA cause amino acid substitutions while synonymous substitutions in DNA leave amino acids unchanged. The cause of the correlation between the substitution rates at nonsynonymous (K(A)) and synonymous (K(S)) sites in mammals is a contentious issue, and one that impacts on many aspects of molecular evolution. Here we use a large set of orthologous mammalian genes to investigate the causes of the K(A)-K(S) correlation in rodents. The strength of the K(A)-K(S) correlation exceeds the neutral theory expectation when substitution rates are estimated using algorithmic methods, but not when substitution rates are estimated by maximum likelihood. Irrespective of this methodological uncertainty the strength of the K(A)-K(S) correlation appears mostly due to tandem substitutions, an excess of which is generated by substitutional nonindependence. Doublet mutations cannot explain the excess of tandem synonymous-nonsynonymous substitutions, and substitution patterns indicate that selection on silent sites is the likely cause. We find no evidence for selection on codon usage. The nature of the relationship between synonymous divergence and base composition is unclear because we find a significant correlation if we use maximum-likelihood methods but not if we use algorithmic methods. Finally, we find that K(S) is reduced at the start of genes, which suggests that selection for RNA structure may affect silent sites in mammalian protein-coding genes.  相似文献   

8.
Synonymous codon usage variation among Giardia lamblia genes and isolates.   总被引:3,自引:0,他引:3  
The pattern of codon usage in the amitochondriate diplomonad Giardia lamblia has been investigated. Very extensive heterogeneity was evident among a sample of 65 genes. A discrete group of genes featured unusual codon usage due to the amino acid composition of their products: these variant surface proteins (VSPs) are unusually rich in Cys and, to a lesser extent, Gly and Thr. Among the remaining 50 genes, correspondence analysis revealed a single major source of variation in synonymous codon usage. This trend was related to the extent of use of a particular subset of 21 codons which are inferred to be those which are optimal for translation; at one end of this trend were genes expected to be expressed at low levels with near random codon usage, while at the other extreme were genes expressed at high levels in which these optimal codons are used almost exclusively. These optimal codons all end in C or G so G + C content at silent sites varies enormously among genes, from values around 40%, expected to reflect the background level of the genome, up to nearly 100%. Although VSP genes are occasionally extremely highly expressed, they do not, in general, have high frequencies of optimal codons, presumably because their high expression is only intermittent. These results indicate that natural selection has been very effective in shaping codon usage in G. lamblia. These analyses focused on sequences from strains placed within G. lamblia "assemblage A"; a few sequences from other strains revealed extensive divergence at silent sites, including some divergence in the pattern of codon usage.  相似文献   

9.
10.
On the rate of DNA sequence evolution inDrosophila   总被引:30,自引:0,他引:30  
Summary Analysis of the rate of nucleotide substitution at silent sites inDrosophila genes reveals three main points. First, the silent rate varies (by a factor of two) among nuclear genes; it is inversely related to the degree of codon usage bias, and so selection among synonymous codons appears to constrain the rate of silent substitution in some genes. Second, mitochondrial genes may have evolved only as fast as nuclear genes with weak codon usage bias (and two times faster than nuclear genes with high codon usage bias); this is quite different from the situation in mammals where mitochondrial genes evolve approximately 5–10 times faster than nuclear genes. Third, the absolute rate of substitution at silent sites in nuclear genes inDrosophila is about three times hihger than the average silent rate in mammals.  相似文献   

11.
Morton BR 《Genetics》2001,159(1):347-358
A previously employed method that uses the composition of noncoding DNA as the basis of a test for selection between synonymous codons in plastid genes is reevaluated. The test requires the assumption that in the absence of selective differences between synonymous codons the composition of silent sites in coding sequences will match the composition of noncoding sites. It is demonstrated here that this assumption is not necessarily true and, more generally, that using compositional properties to draw inferences about selection on silent changes in coding sequences is much more problematic than commonly assumed. This is so because selection on nonsynonymous changes can influence the composition of synonymous sites (i.e., codon usage) in a complex manner, meaning that the composition biases of different silent sites, including neutral noncoding DNA, are not comparable. These findings also draw into question the commonly utilized method of investigating how selection to increase translation accuracy influences codon usage. The work then focuses on implications for studies that assess codon adaptation, which is selection on codon usage to enhance translation rate, in plastid genes. A new test that does not require the use of noncoding DNA is proposed and applied. The results of this test suggest that far fewer plastid genes display codon adaptation than previously thought.  相似文献   

12.
The possibility of pervasive weak selection at tens or hundreds of millions of sites across the genome, suggested by recent studies of silent site DNA sequence variation and divergence, raises the problem of the survival of the population in the face of the large genetic load that may result. Two alternative resolutions of this problem are presented for populations where recombination is sufficiently frequent that different sites under selection evolve independently. One invokes weak stabilizing selection, of the magnitude compatible with abundant silent site variability. This can be shown to produce only a modest genetic load, due to the effectiveness of even weak stabilizing selection in keeping the trait mean close to the optimum. The other invokes soft selection, whereby individuals compete for a limiting resource whose abundance determines the absolute fitness of the population. Weak purifying selection at a large number of sites produces only a small variance in fitness among individuals within the population, due to the fact that most sites are fixed rather than polymorphic. Even when it produces a large genetic load, it is compatible with the observations on fitness variance when selection is soft. It may be very difficult to distinguish between these two possibilities.  相似文献   

13.
Inferring the selective forces that orthologous genes underwent across different lineages can help us understand the evolutionary processes that have shaped their extant diversity and the phenotypes they underlie. The most widespread metric to estimate the selection regimes of coding genes—across sites and phylogenies—is the ratio of nonsynonymous to synonymous substitutions (dN/dS, also known as ω). Nowadays, modern sequencing technologies and the large amount of already available sequence data allow the retrieval of thousands of orthologous genes across large numbers of species. Nonetheless, the tools available to explore selection regimes are not designed to automatically process all genes, and their practical usage is often restricted to the single‐copy ones which are found across all species considered (i.e., ubiquitous genes). This approach limits the scale of the analysis to a fraction of single‐copy genes, which can be as low as an order of magnitude in respect to those which are not consistently found in all species considered (i.e., nonubiquitous genes). Here, we present a workflow named BASE that—leveraging the CodeML framework—eases the inference and interpretation of gene selection regimes in the context of comparative genomics. Although a number of bioinformatics tools have already been developed to facilitate this kind of analyses, BASE is the first to be specifically designed to allow the integration of nonubiquitous genes in a straightforward and reproducible manner. The workflow—along with all relevant documentation—is available at github.com/for‐giobbe/BASE.  相似文献   

14.
The G + C content of silent sites in codons varies greatly among Serratia marcescens genes; the value in any one gene seems to reflect a balance between mutation pressure towards high G + C content and natural selection constraining choice among synonymous codons. Interestingly, non-coding sequences have substantially lower G + C content than silent sites thought to be under little selective constraint.  相似文献   

15.
Molecular correlates of reproductive isolation   总被引:2,自引:0,他引:2  
Evolution of reproductive isolation as a byproduct of genetic divergence in isolated populations is the dominant (albeit not exclusive) mode of speciation in sexual animals. But little is known about the factors linking speciation to general divergence. Several authors have argued that allopatric speciation should proceed more rapidly if isolated populations also experience divergent selection. Reproductive isolation between allopatric populations is not subject to direct selection; it can accumulate only by random drift or as a fortuitous byproduct of selection on other traits. Here I present a novel analysis of published data, demonstrating that pre- and postmating isolation of Drosophila species are more tightly correlated with allozyme divergence than with silent DNA divergence. Inasmuch as proteins are more subject to the action of natural selection than are silent DNA polymorphisms, this result provides broad support for a model of selection-mediated allopatric speciation.  相似文献   

16.
The patterns of synonymous codon usage in 91 Drosophila melanogaster genes have been examined. Codon usage varies strikingly among genes. This variation is associated with differences in G+C content at silent sites, but (unlike the situation in mammalian genes) these differences are not correlated with variation in intron base composition and so are not easily explicable in terms of mutational biases. Instead, those genes with high G+C content at silent sites, resulting from a strong "preference" for a particular subset of the codons that are mostly C- ending, appear to be the more highly expressed genes. This suggests that G+C content is reduced in sequences where selective constraints are weaker, as indeed seen in a pseudogene. These and other data discussed are consistent with the effects of translational selection among synonymous codons, as seen in unicellular organisms. The existence of selective constraints on silent substitutions, which may vary in strength among genes, has implications for the use of silent molecular clocks.   相似文献   

17.
Rand DM  Weinreich DM  Cezairliyan BO 《Gene》2000,261(1):115-125
The neutralist-selectionist debate should not be viewed as a dichotomy but as a continuum. While the strictly neutral model suggests a neutralist-selectionist dichotomy, the nearly neutral model is a continuous model spanning strict neutrality through weak selection (Ns approximately 1) to deterministic selection (Ns>3). We illustrate these points with polymorphism and divergence data from a sample of 73 genes (31 mitochondrial, 36 nuclear genes from Drosophila, and six Arabidopsis data sets). In an earlier study we used the McDonald-Kreitman (MK) test to show that amino acid replacement polymorphism in animal mitochondrial genes and Arabidopsis genes show a consistent trend toward negative selection, whereas nuclear genes from Drosophila span a range from negative selection, through neutrality, to positive selection. Here we analyze a subset of these genes (13 Drosophila nuclear, ten mitochondrial, and six Arabidopsis nuclear) for polymorphism and divergence of conservative and radical amino acid replacements (a protein-based conservative-radical MK, or pMK, test). The distinct patterns of selection between the different genomes is not apparent with the pMK test. Different definitions of conservative and radical (based on amino acid polarity, volume or charge) give inconsistent results across genes. We suggest that segregating fitness difference between silent and replacement mutations are more visible to selection than are segregating fitness differences between conservative and radical amino acid mutations. New data on the variation among genes with different opportunities for positive and negative selection are as important to the continuum view of the neutralist-selectionist debate as is the distribution of selection coefficients within individual genes.  相似文献   

18.
The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5' and 3' untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.  相似文献   

19.
Summary This paper constructs a temporal scale for bacterial evolution by tying ecological events that took place at known times in the geological past to specific branch points in the genealogical tree relating the 16S ribosomal RNAs of eubacteria, mitochondria, and chloroplasts. One thus obtains a relationship between time and bacterial RNA divergence which can be used to estimate times of divergence between other branches in the bacterial tree. According to this approach,Salmonella typhimurium andEscherichia coli diverged between 120 and 160 million years (Myr) ago, a date which fits with evidence that the chief habitats occupied now by these two enteric species became available that long ago.The median extent of divergence betweenS. typhimurium andE. coli at synonymous sites for 21 kilobases of protein-coding DNA is 100%. This implies a silent substitution rate of 0.7–0.8%/Myr—a rate remarkably similar to that observed in the nuclear genes of mammals, invertebrates, and flowering plants. Similarities in the substitution rates of eucaryotes and procaryotes are not limited to silent substitutions in protein-coding regions. The average substitution rate for 16S rRNA in eubacteria is about 1%/50 Myr, similar to the average rate for 18S rRNA in vertebrates and flowering plants. Likewise, we estimate a mean rate of roughly 1%/25 Myr for 5S rRNA in both eubacteria and eucaryotes.For a few protein-coding genes of these enteric bacteria, the extent of silent substitution since the divergence ofS. typhimurium andE. coli is much lower than 100%, owing to extreme bias in the usage of synonymous codons. Furthermore, in these bacteria, rates of amino acid replacement were about 20 times lower, on average, than the silent rate. By contranst, for the mammalian genes studied to date, the average replacement rate is only four to five times lower than the rate of silent substitution.  相似文献   

20.
陶敏  樊棠怀  徐立中  胡成钰 《遗传》2007,29(12):1519-1524
Branch-Site模型是检测基因序列中单个密码子位点是否具有选择作用的统计学方法。该模型能有效地检测基因在进化历程中是否受到选择作用, 并预测出那些在进化过程中对功能分化有重要贡献的、受正选择作用的密码子位点。趋化因子是一类控制免疫细胞定向迁移的细胞因子, 其功能行使由趋化因子受体介导。该文用Branch-Site模型分析趋化因子及其受体基因家族的分子适应性, 发现只有少数种类基因受到正选择作用, 如RANTES、CCR5等。并预测出一些可能受到正选择作用的位点, 蛋白3D分析显示, 它们均位于趋化因子和相应受体相互作用的结构区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号