首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the sex morphs and frequency of females in 24 natural populations of the clonal, gynodioecious species Glechoma longituba. In addition to the presence of hermaphrodites and females, there were some individuals with intermediate sex expression that could not be categorized as either morph. The majority of populations contained a predominance of hermaphrodites, although female frequency varied from 0 to 100%. The sexual expression of individual ramets did not change over three consecutive years or when ramets were transplanted to different populations, but it did change over the course of a flowering season. Seeds from females weighed more than those from hermaphrodites. The seed set of hermaphrodites was relatively constant across populations; the seed set of females was higher than that of hermaphrodites in most populations, but lower in populations in which females occurred at a very high frequency because of pollen limitation. This led to a negative correlation being detected between the seed set of females and the frequency of females in a population. We postulated that the adjustment of sex expression within seasons could be an adaptive mechanism of reproductive assurance in this system.  相似文献   

2.
Dwarf ginseng (Panax trifolium L., Araliaceae) is a diphasic (“sex changing”) species in which one phase has staminate flowers and the other has hermaphroditic flowers. In order to determine the relative allocations of the hermaphroditic gender phase to male and female functions,variation in population gender phase ratios, pollen production and viability, and ovule and seed production were documented. Gender phase ratios are highly male-biased. Dwarf ginseng is self-compatible, and both gender phases have viable pollen capable of effecting fertilization. Males produce more flowers and more viable pollen per anther than hermaphrodites. The phenotypic gender of hermaphrodites is extremely female-biased; it is likely that hermaphrodites function essentially as females. Sexual selection may have a role in the evolution and maintenance of differences between the gender phases in allocation to male function.  相似文献   

3.
Summary Large natural populations of the marine polychaeteCapitella capitata (species type I) contain males, females, and occasionally, hermaphrodites. Environmental conditions control the occurrence of hermaphrodites. At low density or in groups with female-biased sex ratios, males develop into hermaphrodites, and hermaphrodites are common. Crosses suggest that females are heterogametic, and males and hermaphrodites are homogametic. Heterogametic females do not become hermaphrodites.This study shows that in homogametic individuals, environmental conditions determine not only the development of hermaphroditism but also the expression of initial gender. Homogametic individuals can express either male or female gender initially, and homogametic individuals of either gender can develop subsequently into simultaneous hermaphrodites. The choice of initial gender depends on isolation. Most homogametic juveniles become females if reared alone but males if reared with other conspecifics. Homogametic males readily develop into hermaphrodites if females are rare. In contrast, homogametic females rarely become hermaphrodites.  相似文献   

4.
The populations of gonadotropin-releasing hormone (GnRH)-producing cells within the preoptic area (POA) and terminal nerve (TN) of the brain have been suggested as the neuronal systems mediating social control of sex and gonadogenesis in sequentially hermaphroditic teleosts. In the present study, the number and soma size of GnRH-immunoreactive (GnRH-ir) cells in the POA and TN were studied in male, female and juvenile individuals of the dusky anemonefish (Amphiprionmelanopus), a species which displays both male to female sex change and socially controlled sexual maturation. The results showed that the number of POA (but not TN) GnRH-ir cells differ significantly between sexual phases, with males displaying higher cell numbers than both females and juveniles. Soma sizes of POA and TN GnRH-ir cells were larger in females than in males and juveniles. However, this relationship was fully explained by differences in body size. The results indicate that high POA GnRH cell numbers are part of a masculinizing mechanism and support the hypothesis that the POA GnRH cell population plays a central role in initiating or mediating the process of socially induced gonadal and/or behavioural transformations in sequential hermaphrodites. Accepted: 9 June 1997  相似文献   

5.

Background and Aims

Variation in the relative female and male reproductive success of flowering plants is widespread, despite the fundamental hermaphroditic condition of the majority of species. In many hermaphroditic populations, environmental conditions and their influence on development and size can influence the gender expression of individuals through the formation of hermaphroditic and unisexual flowers. This study investigates the hypothesis that the bulbous, animal-pollinated, perennial Lilium apertum (Liliaceae) exhibits a form of size-dependent gender modification known as gender diphasy, in which the sexual expression of individuals depends on their size, with plants often changing sex between seasons.

Methods

Variation in floral traits was examined in relation to their size using marked individuals in natural populations, and also under glasshouse conditions. Measurements were taken of the height, flower number, floral sex expression, flower size, flower biomass and pollen production of individuals over consecutive years between 2009 and 2012 in seven populations in south-west China.

Key Results

Flowers of L. apertum are either perfect (hermaphroditic) or staminate (male) and, in any given season, plants exhibit one of three sex phenotypes: only hermaphrodite flowers, a mixture of hermaphroditic and male flowers, or only male flowers. Transitions between each of these sex phenotypes were observed over consecutive years and were commonly size-dependent, particularly transitions from small plants bearing only male flowers to those that were taller with hermaphroditic flowers. Hermaphroditic flowers were significantly larger, heavier and produced more pollen than male flowers.

Conclusions

The results for L. apertum are consistent with the ‘size advantage hypothesis’ developed for animal species with sex change. The theory predicts that when individuals are small they should exhibit the sex for which the costs of reproduction are less, and this usually involves the male phase. L. apertum provides an example of gender diphasy, a rare sexual system in flowering plants.  相似文献   

6.
Trioecy is an uncommon sexual system in which males, females, and hermaphrodites co-occur as three clearly different gender classes. The evolutionary stability of trioecy is unclear, but would depend on factors such as hermaphroditic sex allocation and rates of outcrossing vs. selfing. Here, trioecious populations of Mercurialis annua are described for the first time. We examined the frequencies of females, males and hermaphrodites across ten natural populations and evaluated the association between the frequency of females and plant densities. Previous studies have shown that selfing rates in this species are density-dependent and are reduced in the presence of males, which produce substantially more pollen than hermaphrodites. Accordingly, we examined the evolutionary stability of trioecy using an experiment in which we (a) indirectly manipulated selfing rates by altering plant densities and the frequency of males in a fully factorial manner across 20 experimental plots and (b) examined the effect of these manipulations on the frequency of the three sex phenotypes in the next generation of plants. In the parental generation, we measured the seed and pollen allocations of hermaphrodites and compared them with allocations by unisexual plants. In natural populations, females occurred at higher frequencies in denser patches, a finding consistent with our expectations. Under our experimental conditions, however, no combination of plant densities and male frequencies was associated with increased frequencies of females. Our results suggest that the factors that regulate female frequencies in trioecious populations of M. annua are independent of those regulating male frequencies (density), and that the stable co-existence of all three sex phenotypes within populations is unlikely.  相似文献   

7.
Seasonal changes in sex ratio and size‐related sex reversal of the protogynous hermaphroditic Cephalopholis taeniops were studied from histological and population data of 218 individuals captured by hook and line, July 2009–November 2012, in Cape Verde archipelago. This study showed that C. taeniops have a diandric protogynous hermaphrodite sexual model, with young individuals undergoing bisexual development and hermaphrodites above 28 cm. All gonads had a bisexual immature stage with primary and secondary males. Primary males possibly originate from immature bisexual individuals, whereas secondary males likely result from females that have already reproduced and changed sex.  相似文献   

8.
KORPELAINEN, H., 1994. Growth, sex determination and reproduction of Dryopteris filix-mas (L.) Schott gametophytes under varying nutritional conditions. Gametophyte isolates originating from two populations of Dryopteris filix-mas (L.) Schott were grown in culture media containing different amounts of nutrients. Both nutrition and source population significantly affected gametophyte growth, sex, reproduction and mortality. Taking into account the most optimal nutritional condition for the selfing of gametophytes originating from individual source sporophytes, the proportions of hermaphrodites reproducing by intragametophytic selfing in the two populations varied from 33 to 96% and from 54 to 100%, respectively. It is emphasized that when examining the amount of genetic load only hermaphrodites, not all individuals, should be included, and genetic load should be estimated from the growth experiments where the intensity of reproduction is at the maximum. It was detected that hermaphroditic gametophytes are considerably larger than males or asexuals. It follows that gametophyte size is decisive in sex determination. It is suggested that the effect of antheridiogen hormones, which is considered to be an important factor in gametophyte sex determination, is indirect. Antheridiogens would actually affect size, and size would influence sex expression. The ecology of fern mating systems, and the different genetic and nongenetic factors which promote intergametophytic matings are discussed.  相似文献   

9.
Almost all models of sex change evolution assume that reproductive rate increases with body size. However, size-dependent sex changing plants often show size-independent reproductive success, presumably due to pollen limitation. Can the observed size-dependent sex change pattern be the ESS in this case? To answer this question, we analyze a game model of size-dependent sex expression in plants. We assume: (1) reproductive rate is perfectly independent of size; (2) mortality decreases with size in the same way for both sexes; (3) growth rates decrease at maturity, more for females than males. We show that the ESS is size-dependent sex expression: small individuals are vegetative, intermediate individuals are male, and large individuals are female. These results demonstrate that mortality is important in size-dependent sex allocation even when mortality rate is independent of sex. They also offer an explanation of why we see populations in poor environments to have sex ratios more biased toward the first sex relative to high quality environments.  相似文献   

10.
Theoretical models have shown that metapopulation structure can influence the evolution of the sex ratio in gynodioecious plants when the fitness of females and/or hermaphrodites varies among populations with the local sex ratio. Such frequency-dependent fitness has been demonstrated previously in natural populations of Silene vulgaris, a gynodioecious plant in which sex determination is cytonuclear. We investigated whether there was an association between chloroplast DNA (cpDNA) haplotype and sex expression, with the assumption that cpDNA haplotypes could be associated with specific male sterility variants likely found in the mitochondrial DNA, owing to co-transmission of the two cytoplasmic genomes. Two cpDNA haplotypes were studied in a collection of 111 individuals of known sex taken from 20 natural populations found in Virginia, USA. The set of haplotype 1 individuals consisted of 71.4% hermaphrodites, where as only 7.7% of the haplotype 2 individuals were hermaphroditic; a highly statistically significant difference. By extension of a previous model it was also shown that the differential clustering of these two haplotypes into local populations contributes to among-population sex ratio variation and has the potential to lower the fitness of haplotype 2 by greater than 50%, relative to that expected with no population structure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Populations of three North American species of Lycium (Solanaceae) are morphologically gynodioecious and consist of male-sterile (i.e., female) and hermaphroditic plants. Marked individuals were consistent in sexual expression across years and male sterility was present throughout much of the species' ranges. Controlled pollinations reveal that L. californicum, L. exsertum, and L. fremontii are functionally dioecious. Fruit production in females ranged from 36 to 63%, whereas hermaphrodites functioned essentially as males. Though hermaphrodites were mostly male, investigation of pollen tube growth reveals that hermaphrodites of all dimorphic species were self-compatible. Self-fertilization and consequent inbreeding depression are commonly invoked as important selective forces promoting the invasion of male-sterile mutants into cosexual populations. A corollary prediction of these models is that gender dimorphism evolves from self-compatible ancestors. However, fruit production, seed production, and pollen tube number following outcross pollination were significantly higher than following self-pollination for three diploid, cosexual species that are closely related to the dimorphic species. The data presented here on incompatibility systems are consistent with the hypothesis that polyploidy disrupted the self-incompatibility system in the gynodioecious species leading to the evolution of gender dimorphism.  相似文献   

12.
Summary This paper examines the correlates of individual size, reproductive success, gonadal allocation, and growth in a hermaphroditic reef fish. Individuals in S. fasciatus mature as simultaneous hermaphrodites; large individuals subsequently lose female function and become functional males. Daily female reproductive success was highly correlated with both hermaphrodite size and amount of female gonadal tissue. Three separate comparisons gave a positive correlation between male reproductive success and male gonadal allocation: (1) Males had higher levels of male gonadal allocation and male reproductive success than hermaphrodites. (2) The percent of gonad allocated to male tissue in hermaphrodites was higher in the year they had higher male mating success. (3) Male gonadal tissue of hermaphrodites was positively correlated with male reproductive success in the year that male reproductive success by hermaphrodites was higher and more variable. There was no evidence for a trade-off between male function, female function, and growth among hermaphrodites. Many of these patterns have also been observed in plants, but the selective pressures leading to these patterns in S. fasciatus and plants are probably quite different.  相似文献   

13.
Seed production and patterns of sex allocation were studied in female and hermaphroditic plants in two gynodioecious populations of Geranium sylvaticum (Geraniaceae). Females produced more flower buds and seeds than hermaphrodites in one of the two study populations. The other female traits measured (pistil biomass, seed number per fruit, individual seed mass) did not differ between the gender morphs. The relative seed fitness of hermaphrodites differed between the study populations, with hermaphrodites gaining less of their fitness through female function in the population with a high frequency of females. However, the amount and size of pollen produced by hermaphrodites did not differ between populations. The number of flower buds was positively correlated with seed production in females, whereas in hermaphrodites a positive correlation between number of buds and seed production was found in only one of the two study populations. These results suggest that fitness gain through female function is labile in hermaphrodites of this species, and is probably affected by environmental factors such as the sex ratio of the population.  相似文献   

14.
Silene acaulis (Caryophyllaceae) is an alpine-arctic plant with a gynodioecious breeding system, but significant variation in sex expression has been reported. In addition, population sex ratio may be modified by the anther-smutMicrobotryum violaceum (Pers.)Deml & Oberwinkler, which sterilizes individuals of both sexes. A survey was undertaken at several sites on Baffin Island, Canada, to determine sex ratio and assess variation in female function among morphologically hermaphroditic individuals. The degree of anthersmut infection was also measured. Six sites had high female frequencies ranging from 72–80% and < 2% smut infection. High female frequencies may indicate cytoplasmic control of male-sterility. A seventh site from a mesic habitat had only 50% females and a higher rate of smut infection (22%). Of the three sites studied in detail, 84% of females set at least one capsule compared to only 25% of the hermaphrodites, indicating reduced female function. Hermaphrodites displayed significant variability in female function. Flowers with short styles (< 4.0mm) had degenerated ovules, and field estimates confirmed that only 5% of these individuals set capsules, but comprised the majority (> 55%) of hermaphrodites. Although hermaphrodites with short-styled flowers functioned solely as males, there was no increase in pollen production compared to long-styled hermaphrodites. Long-styled hermaphrodites produced the same number of ovules as females, and all set at least one capsule but these plants were uncommon (< 11%) at all sites.  相似文献   

15.
The importance of large breeding individuals for maintaining the health of marine fish and invertebrate populations has long been recognized. Unfortunately, decades of human harvesting that preferentially remove larger individuals have led to drastic reductions in body sizes of many of these species. Such size-selective harvesting is particularly worrisome for sequentially hermaphroditic species where the larger size classes are composed primarily of one sex. Whether these species can maintain stable sex ratios under sustained harvesting pressure depends on the level of plasticity of their life-history traits. Here, we show that populations of a marine limpet (Lottia gigantea) can adjust a fundamental aspect of their life history (the timing of sex change) when subjected to size-selective harvesting. As predicted by theoretical models, individuals from harvested populations change sex at smaller sizes and grow at slower rates compared to individuals from protected populations. In addition, the relative size at which the change from male to female occurs remains constant (~0.75; size at sex change/maximum size) across populations, regardless of harvesting pressure. Our results show that population-level demographic and life-history data, in conjunction with existing theory, can be sufficient to predict the responses of sequential hermaphrodites to harvesting pressure. Furthermore, they suggest such species can potentially adapt to size-selective harvesting.  相似文献   

16.
Lana Knoll 《Hydrobiologia》1995,298(1-3):73-81
The clam shrimp,Eulimnadia texana (Crustacea, Conchostraca), is found in freshwater ephemeral environments throughtout the United States. Individual clam shrimp of this species are either hermaphroditic or male, a relatively rare mating system for animals known as androdioecy. Comparison of sex ratios between four neighboring populations ofE. texana in Southern New Mexico showed wide variation in the ratio of males to hermaphrodites with males making up as much as 42% of some populations and not occurring at all within others. Since little is known about the behavior of this species, an ethogram and time budget were prepared based on observations of laboratory populations. Males attempt to clasp hermaphrodites prior to mating. Precopulatory mate guarding occurs in this species. Outcrossing generally occurs during mate guarding and after the hermaphrodite molts. Hermaphrodites, however, seem to control the mating process. Successful mating by males never occured if the hermaphrodite struggled with him; hermaphrodite will self in the presence of males.  相似文献   

17.
D E Wolf  J A Satkoski  K White  L H Rieseberg 《Genetics》2001,159(3):1243-1257
Datisca glomerata is an androdioecious plant species containing male and hermaphroditic individuals. Molecular markers and crossing data suggest that, in both D. glomerata and its dioecious sister species D. cannabina, sex is determined by a single nuclear locus, at which maleness is dominant. Supporting this conclusion, an amplified fragment length polymorphism (AFLP) is heterozygous in males and homozygous recessive in hermaphrodites in three populations of the androdioecious species. Additionally, hermaphrodite x male crosses produced 1:1 sex ratios, while hermaphrodite x hermaphrodite crosses produced almost entirely hermaphroditic offspring. No perfectly sex-linked marker was found in the dioecious species, but all markers associated with sex mapped to a single linkage group and were heterozygous in the male parent. There was no sex-ratio heterogeneity among crosses within D. cannabina collections, but males from one collection produced highly biased sex ratios (94% females), suggesting that there may be sex-linked meiotic drive or a cytoplasmic sex-ratio factor. Interspecific crosses produced only male and female offspring, but no hermaphrodites, suggesting that hermaphroditism is recessive to femaleness. This comparative approach suggests that the hermaphrodite form arose in a dioecious population from a recessive mutation that allowed females to produce pollen.  相似文献   

18.
Previous studies on sex allocation in simultaneous hermaphrodites have typically focused either on evolutionary or one-time, ontogenetic optimization of sex allocation, ignoring variation within an individual's lifetime. Here, we study whether hermaphrodites also possess facultative sex allocation, that is, a phenotypic flexibility, allowing them to distribute resources to either sex in an opportunistic way during their adult lifetime. We used the simultaneously hermaphroditic free-living flatworm Macrostomum lignano and raised individuals in pairs and groups of eight worms (further called octets) until sexual maturity was reached and sex allocation for the current conditions was expected to be set. Treatment groups were subsequently transferred to the alternative group size, that is, from pairs to octets or from octets to pairs, and compared to two control groups, which were transferred without changing group size. The results show that worms in treatment groups responded as expected by the local mate competition theory for simultaneous hermaphrodites: increasing group size resulted in a shift toward a more male-biased sex allocation and vice versa. These findings reveal that sex allocation in these animals is not fixed during ontogeny, but remains flexible after maturation. We argue that phenotypically flexible sex allocation in hermaphroditic animals may help us to understand the evolution and ecology of hermaphroditism.  相似文献   

19.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

20.
BACKGROUND AND AIMS: Species that exhibit among-population variation in breeding system are particularly suitable to study the importance of the ecological context for the stability and evolution of gender polymorphism. Geographical variation in breeding system and sex ratio of Daphne laureola (Thymelaeaceae) was examined and their association with environmental conditions, plant and floral display sizes, and pollination environment in a broad geographic scale was analysed. METHODS: The proportion of female and hermaphrodite individuals in 38 populations within the Iberian Peninsula was scored. Average local temperature and precipitation from these sites were obtained from interpolation models based on 30 years of data. Pollination success was estimated as stigmatic pollen loads, pollen tubes per ovule and the proportion of unfertilized flowers per individual in a sub-set of hermaphroditic and gynodioecious populations. KEY RESULTS: Daphne laureola is predominantly gynodioecious, but hermaphroditic populations were found in northeastern and southwestern regions, characterized by higher temperatures and lower annual precipitation. In the gynodioecious populations, female plants were larger and bore more flowers than hermaphrodites. However, due to their lower pollination success, females did not consistently produce more seeds than hermaphrodites, which tends to negate a seed production advantage in D. laureola females. In the northeastern hermaphroditic populations, plants were smaller and produced 9-13 times fewer flowers than in the other Iberian regions, and thus presumably had a lower level of geitonogamous self-fertilization. However, in a few southern populations hermaphroditism was not associated with small plant size and low flower production. CONCLUSIONS: The findings highlight that different mechanisms, including abiotic conditions and pollinator service, may account for breeding system variation within a species' distribution range and also suggest that geitonogamy may affect plant breeding system evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号