首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) are produced by hepatic nonparenchymal cells after systemic injury and have been reported to inhibit ATP synthesis in hepatocytes, which may contribute to hepatic dysfunction in inflammatory states. To elucidate the mechanisms of action of IL-1beta and IL-6 on hepatocellular ATP synthesis, we measured the oxygen uptake rate (OUR) and mitochondrial membrane potential (MMP) of stable hepatocyte cultures, and analyzed the dynamic MMP response following the addition of mitochondrial inhibitors (antimycin A and oligomycin) with a model of mitochondrial metabolism. IL-1beta reduced mitochondrial OUR coupled to ATP synthesis via inhibition of phosphorylation reactions which dissipate the MMP, including ATP synthesis and consumption. Furthermore, the ATP synthesis rate in cytokine-free and IL-1beta-treated hepatocytes was controlled primarily by phosphorylation reactions, which corresponds to a state where the ATP synthesis rate closely follows the cellular energy demand. Thus, IL-1beta-mediated effects on electron transport and substrate oxidation reactions are not likely to significantly impact on ATP synthesis. IL-6 did not reduce mitochondrial OUR coupled to ATP synthesis, but shifted the control for ATP synthesis towards processes which generate the MMP, indicating that IL-6 induces a metabolic state where cellular functions are limited by the mitochondrial energy supply.  相似文献   

2.
The synthesis of periplasmic beta(1-2)glucan is required for crown gall tumor formation by Agrobacterium tumefaciens and for effective nodulation of alfalfa by Rhizobium meliloti. The exoC (pscA) gene is required for this synthesis by both bacteria as well as for the synthesis of capsular polysaccharide and normal lipopolysaccharide. We tested the possibility that the pleiotropic ExoC phenotype is due to a defect in the synthesis of an intermediate common to several polysaccharide biosynthetic pathways. Cytoplasmic extracts from wild-type A. tumefaciens and from exoC mutants of A. tumefaciens containing a cloned wild-type exoC gene synthesized in vitro UDP-glucose from glucose, glucose 1-phosphate, and glucose 6-phosphate. Extracts from exoC mutants synthesized UDP-glucose from glucose 1-phosphate but not from glucose or glucose 6-phosphate. Membranes from exoC mutant cells synthesized beta(1-2)glucan in vitro when exogenous UDP-glucose was added and contained the 235-kilodalton protein, which has been shown to carry out this synthesis in wild-type cells. We conclude that the inability of exoC mutants to synthesize beta(1-2)glucan is due to a deficiency in the activity of the enzyme phosphoglucomutase (EC 2.7.5.1), which in wild-type bacteria converts glucose 6-phosphate to glucose 1-phosphate, an intermediate in the synthesis of UDP-glucose. This interpretation can account for all of the deficiencies in polysaccharide synthesis which have been observed in these mutants.  相似文献   

3.
4.
In Salmonella enterica serovar Typhimurium a mutation in the purF gene encoding the first enzyme in the purine pathway blocks, besides the synthesis of purine, the synthesis of thiamine when glucose is used as the carbon source. On carbon sources other than glucose, a purF mutant does not require thiamine, since the alternative pyrimidine biosynthetic (APB) pathway is activated. This pathway feeds into the purine pathway just after the PurF biosynthetic step and upstream of the intermediate 4-aminoimidazolribotide, which is the common intermediate in purine and thiamine synthesis. The activity of this pathway is also influenced by externally added pantothenate. tRNAs from S. enterica specific for leucine, proline, and arginine contain 1-methylguanosine (m(1)G37) adjacent to and 3' of the anticodon (position 37). The formation of m(1)G37 is catalyzed by the enzyme tRNA(m(1)G37)methyltransferase, which is encoded by the trmD gene. Mutations in this gene, which result in an m(1)G37 deficiency in the tRNA, in a purF mutant mediate PurF-independent thiamine synthesis. This phenotype is specifically dependent on the m(1)G37 deficiency, since several other mutations which also affect translation fidelity and induce slow growth did not cause PurF-independent thiamine synthesis. Some antibiotics that are known to reduce the efficiency of translation also induce PurF-independent thiamine synthesis. We suggest that a slow decoding event at a codon(s) read by a tRNA(s) normally containing m(1)G37 is responsible for the PurF-independent thiamine synthesis and that this event causes a changed flux in the APB pathway.  相似文献   

5.
The ability of insulin to stimulate protein synthesis and cellular growth is mediated through the insulin receptor (IR), which phosphorylates Tyr residues in the insulin receptor substrate-signaling proteins (IRS-1 and IRS-2), Gab-1, and Shc. These phosphorylated substrates directly bind and activate enzymes such as phosphatidylinositol 3'-kinase (PI3K) and the guanine nucleotide exchange factor for p21Ras (GRB-2/SOS), which are in turn required for insulin-stimulated protein synthesis, cell cycle progression, and prevention of apoptosis. We have now shown that one or more members of the atypical protein kinase C group, as exemplified by the zeta isoform (PKC zeta), are downstream of IRS-1 and P13K and mediate the effect of insulin on general protein synthesis. Ectopic expression of constitutively activated PKC zeta eliminates the requirement of IRS-1 for general protein synthesis but not for insulin-stimulated activation of 70-kDa S6 kinase (p70S6K), synthesis of growth-regulated proteins (e.g., c-Myc), or mitogenesis. The fact that PKC zeta stimulates general protein synthesis but not activation of p70S6K indicates that PKC zeta activation does not involve the proto-oncogene Akt, which is also activated by PI3K. Yet insulin is still required for the stimulation of general protein synthesis in the presence of constitutively active PKC zeta and in the absence of IRS-1, suggesting a requirement for the convergence of the IRS-1/PI3K/PKC zeta pathway with one or more additional pathways emanating from the IR, e.g., Shc/SOS/p21Ras/mitogen-activated protein kinase. Thus, PI3K appears to represent a bifurcation in the insulin signaling pathway, one branch leading through PKC zeta to general protein synthesis and one, through Akt and the target of rapamycin (mTOR), to growth-regulated protein synthesis and cell cycle progression.  相似文献   

6.
Four temperature-sensitive cell-cycle mutants of rat 3Y1 clonal fibroblasts representing separate complementation groups (3Y1tsD123, 3Y1tsF121, 3Y1tsG125 and 3Y1tsH203) are arrested at restrictive temperature, primarily with a G1-phase DNA content (temperature arrest). We examined various factors affecting signal transduction for activity which induces DNA synthesis at the restrictive temperature when added to the temperature-arrested cultures of these mutants. The factors examined were theophylline, dibutyryl cyclic AMP, cholera toxin (CT), dibutyryl cyclic GMP, sodium nitroprusside, phorbol 12-myristate 13-acetate, 1-oleoyl 2-acetylglycerol, bombesin, vasopressin, basic fibroblast growth factor (FGF), platelet-derived growth factor, A23187, monensin, epidermal growth factor (EGF), insulin and fetal calf serum (FCS). None of these factors induced DNA synthesis in 3Y1tsH203. In one mutant (3Y1ts121), FGF, EGF and FCS individually induced DNA synthesis. In the other 2 mutants (3Y1tsD123 and 3Y1tsG125), FGF and CT individually induced DNA synthesis. The FGF-induced DNA synthesis was suppressed by islet-activating protein (IAP) in 3Y1tsD123 and 3Y1tsG125, but not in 3Y1tsF121. The CT-induced DNA synthesis was also suppressed by IAP, as previously shown. When temperature-arrested cultures were shifted to a permissive temperature, all 4 mutants initiated DNA synthesis in the presence of IAP. These results suggest that (1) a cell can prepare for the initiation of DNA synthesis by using several independent signal transduction pathways, and (2) in a given situation, the cell uses a particular pathway because of its availability, which depends on the culture conditions.  相似文献   

7.
8.
The precursors for linkage unit (LU) synthesis in Staphylococcus aureus H were UDP-GlcNAc, UDP-N-acetylmannosamine (ManNAc) and CDP-glycerol and synthesis was stimulated by ATP. Moraprenol-PP-GlcNAc-ManNAc-(glycerol phosphate)1-3 was formed from chemically synthesised moraprenol-PP-GlcNAc, UDP-ManNAc and CDP-glycerol in the presence of Triton X-100. LU intermediates formed under both conditions served as acceptors for ribitol phosphate residues, from CDP-ribitol, which comprise the main chain. The initial transfer of GlcNAc-1-phosphate from UDP-GlcNAc was very sensitive to tunicamycin whereas the subsequent transfer of ManNAc from UDP-ManNAc was not. Poly(GlcNAc-1-phosphate) and LU synthesis in Micrococcus varians, with endogenous lipid acceptor, UDP-GlcNAc and CDP-glycerol, was stimulated by UDP-ManNAc. Synthesis of LU on exogenous moraprenol-PP-GlcNAc, with Triton X-100, was dependent on UDP-ManNAc and CDP-glycerol and the intermediates formed served as substrates for polymer synthesis. Membranes from Bacillus subtilis W23 had much lower levels of LU synthesis, but UDP-ManNAc was again required for optimal synthesis in the presence of UDP-GlcNAc and CDP-glycerol. Conditions for LU synthesis on exogenous moraprenol-PP-GlcNAc were not found in this organism. LU synthesis on endogenous acceptor in the absence of UDP-ManNAc was explained by contamination of membranes with UDP-GlcNAc 2-epimerase. Under appropriate conditions, low levels of this enzyme were sufficient to convert UDP-GlcNAc into a mixture of UDP-Glc-NAc and UDP-ManNAc and account for LU synthesis. The results indicate the formation of prenol-PP-GlcNAc-ManNAc-(glycerol phosphate)1-3 which is involved in the synthesis of wall teichoic acids in S. aureus H, M. varians and B. subtilis W23 and their attachment to peptidoglycan.  相似文献   

9.
Regulation of apolipoprotein A1 synthesis in avian muscles   总被引:4,自引:0,他引:4  
Until recently, liver and intestinal mucosa were believed to be the sole sites of synthesis of apolipoprotein A1 (Apo-A1), the major protein component of serum high density lipoprotein particles. We recently showed (Shackelford, J.E., and Lebherz, H.G. (1983) J. Biol. Chem. 258, 7175-7180) that chick breast muscle also synthesizes and secretes Apo-A1 but does so at high rates only around the time of hatching. In the present work, we investigate the regulation of synthesis of Apo-A1 in chicken muscles. 1) The primary translation product encoded for by muscle Apo-A1 mRNA is about 2600 daltons larger than the mature serum protein which is consistent with the idea that, like its mammalian liver counterpart, chick muscle Apo-A1 mRNA codes for an NH2-terminal extension (prepro segment) which is 24 amino acids long. 2) The developmentally regulated rise and fall in muscle Apo-A1 synthesis which occurs around the time of hatching is associated with a large accumulation followed by depletion of Apo-A1 mRNA molecules during this period. 3) Reinitiation of Apo-A1 synthesis to high levels in mature breast muscle occurred in vivo following surgical denervation and in vitro by maintaining breast muscle explants for several days in defined culture media. 4) Cardiac, but not smooth, muscles also synthesize and secrete Apo-A1 at high levels around the time of hatching. These and other observations are discussed in terms of possible regulatory "signals" which may control Apo-A1 synthesis in avian muscles.  相似文献   

10.
During phorbol ester-induced differentiation of HL-60 monocytic cells, tumor necrosis factoralpha (TNFalpha) synthesis and secretion are increased, which contributes to the autocrine regulation of TNFalpha-responsive genes. We investigated how, during phorbol ester-induced differentiation of HL-60 cells, the secreted TNFalpha modulated plasminogen activator inhibitor type I (PAI-1) and gelatinase B (MMP-9) syntheses, two proteins involved in pericellular proteolysis. The differentiation-induced release of TNFalpha, was abolished by the hydroxamate-based matrix metalloproteinase (MMP) inhibitor, RU36156. RU36156 or a neutralizing anti-TNFalpha significantly down-regulated PAI-1 synthesis exclusively during the early phases of differentiation (from promyelocyte to monocytic-like cells), which underlined the activating role of autocrine TNFalpha during this time range. As cells progressed to monocyte/macrophage phenotype, they still released TNFalpha, but RU36156 or anti-TNFalpha no longer had an effect on PAI-1 synthesis. This lack of effect was not due to a default of TNFalpha signaling since PAI-1 synthesis was still stimulated in response to exogenous TNFalpha. TNFalpha receptor RI was also actively released and was shown to reduce TNFalpha activity which may account for the inability of soluble TNFalpha to up-regulate PAI-1 synthesis. In later mature stage, cells became susceptible to exogenous TNFalpha-induced apoptosis and rapidly lost their ability to respond to TNFalpha. The MMP-9 synthesis followed similar regulation as PAI-1. Isolated human blood monocytes-derived macrophages behave like HL-60-derived macrophages. In conclusion, these results show that during leukocyte differentiation, time windows exist during which the autocrine TNFalpha is active and then down-regulated by RI, which may temper a continuous up-regulation of the synthesis of proteins involved in pericellular proteolysis.  相似文献   

11.
The antineoplastic cyclic depsipeptide didemnin B (DB) inhibits protein synthesis in cells and in vitro. The stage at which DB inhibits protein synthesis in cells is not known, although dehydrodidemnin B arrests translation at the stage of polypeptide elongation. Inhibition of protein synthesis by DB in vitro also occurs at the elongation stage, and it was shown previously that DB prevents EF-2-dependent translocation in partial reaction models of protein synthesis. This inhibition of translocation displays an absolute requirement for EF-1alpha; however, the dependence upon EF-1alpha was previously unexplained. It is shown here that DB binds only weakly to EF-1alpha/GTP in solution, but binds to ribosome. EF-1alpha complexes with a dissociation constant K(d) = 4 microM. Thus, the inhibition of protein synthesis by DB appears to involve an interaction with both EF-1alpha and ribosomes in which all three components are required. Using diphtheria toxin-mediated ADP-ribosylation to assay for EF-2, it is demonstrated that DB blocks EF-2 binding to pre-translocative ribosome.EF-1alpha complexes, thus preventing ribosomal translocation. Based on this model for protein synthesis inhibition by DB, and the proposed mechanism of action of fusidic acid, evidence is presented in support of the Grasmuk model for EF-1alpha function in which this elongation factor does not fully depart the ribosome during polypeptide elongation.  相似文献   

12.
Summary Seven temperature-sensitive mutants have been isolated in Saccharomyces cerevisiae which show a reproducible defect in DNA synthesis at the restrictive temperature. One of these is allelic with rnal1 (Hartwell et al., 1970) but the remaining mutants define six complementation groups and probably represent six different genes. The gene symbol dds (for depressed DNA synthesis) is proposed.At the restrictive temperature, rnal1-2, dds2-1 and dds6-1 show a rapid and almost total cessation of DNA and RNA synthesis, whilst protein synthesis continues for several hours. The remaining dds mutants show a reduced rate of DNA synthesis from the time of temperature shift (dds1, dds3, dds4) or a cessation of DNA synthesis at a later time (dds5). In some cases, RNA synthesis is affected concomitantly with, or soon after, the depression in DNA synthesis. Possible reasons for the phenotypes of these mutants, and for the relative absence of yeast mutants which are unambiguously and specifically affected in DNA synthesis, are discussed.In addition, we report the isolation of seven new alleles of known cdc genes and ten new mutants with a cell cycle phenotype that complement those already known.  相似文献   

13.
Saccharomyces cerevisiae mitochondria contain enzymes required for synthesis of the phospholipids cardiolipin (CL) and phosphatidylethanolamine (PE), which are enriched in mitochondrial membranes. Previous studies indicated that PE may compensate for the lack of CL, and vice versa. These data suggest that PE and CL have overlapping functions and that the absence of both lipids may be lethal. To address this hypothesis, we determined whether the crd1delta mutant, which lacks CL, was viable in genetic backgrounds in which PE synthesis was genetically blocked. Deletion of the mitochondrial PE pathway gene PSD1 was synthetically lethal with the crd1delta mutant, whereas deletion of the Golgi and endoplasmic reticulum pathway genes PSD2 and DPL1 did not result in synthetic lethality. A 20-fold reduction in phosphatidylcholine did not affect the growth of crd1delta cells. Supplementation with ethanolamine, which led to increased PE synthesis, or with propanolamine, which led to synthesis of the novel phospholipid phosphatidylpropanolamine, failed to rescue the synthetic lethality of the crd1delta psd1delta cells. These results suggest that mitochondrial biosynthesis of PE is essential for the viability of yeast mutants lacking CL.  相似文献   

14.
Hydrogen peroxide is an important mediator of intracellular signaling, which potently enhances the expression of heme oxygenase-1 (HO-1) and upregulates synthesis of vascular endothelial growth factor (VEGF). The purpose of the present study was to explore the involvement of HO-1 in regulation of H(2)O(2)-mediated induction of VEGF synthesis. We provide genetic evidence that basal and H(2)O(2)-induced VEGF synthesis is partially dependent on HO-1. Inhibition of HO-1 activity by tin protoporphyrin (SnPPIX) resulted in downregulation of VEGF synthesis in murine fibroblasts and human keratinocytes. The relationship between HO-1 and VEGF was corroborated by using cells derived from HO-1 knockout mice, which demonstrated lower basal and H(2)O(2)-induced production of VEGF. Additionally, knock out of HO-1 gene impaired induction of VEGF by hemin, lysophosphatidylcholine, and prostaglandin-J(2). Our results provide confirmation for the involvement of HO-1 in regulation of angiogenesis.  相似文献   

15.
Plasmolysed chloramphenicol-treated Escherichia coli cells carrying the colicinogenic factor E1 utilize deoxynucleoside triphosphates for the semi-conservative synthesis of Col E1 DNA. Col E1 DNA replication in plasmolysed cells can be dissociated into two temporally separated processes: (a) a rifampicin-sensitive RNA synthesis, which is stimulated by adenosine 3':5'-monophosphate (cyclic AMP) and requires all four ribonucleoside triphosphates and (b) an ATP-dependent DNA synthesis, which is inhibited by arabinosylnucleoside triphosphates and sulfhydryl-blocking reagents. Thes two processes exhibit different sensitivities to inhibition by polyamines and actinomycin D.  相似文献   

16.
17.
18.
We demonstrated recently that, in intact cells of Chlamydomonas reinhardtii, interruption of CO2 fixation via the Calvin cycle inhibits the synthesis of proteins in photosystem II (PSII), in particular, synthesis of the D1 protein, during the repair of PSII after photodamage. In the present study, we investigated the mechanism responsible for this phenomenon using intact chloroplasts isolated from spinach leaves. When CO2 fixation was inhibited by exogenous glycolaldehyde, which inhibits the phosphoribulokinase that synthesizes ribulose-1,5-bisphosphate, the synthesis de novo of the D1 protein was inhibited. However, when glycerate-3-phosphate (3-PGA), which is a product of CO2 fixation in the Calvin cycle, was supplied exogenously, the inhibitory effect of glycolaldehyde was abolished. A reduced supply of CO2 also suppressed the synthesis of the D1 protein, and this inhibitory effect was also abolished by exogenous 3-PGA. These findings suggest that the supply of 3-PGA, generated by CO2 fixation, is important for the synthesis of the D1 Protein. It is likely that 3-PGA accepts electrons from NADPH and decreases the level of reactive oxygen species, which inhibit the synthesis of proteins, such as the D1 protein.  相似文献   

19.
During microcyst germination in the cellular slime mould Polysphondylium pallidum, an immediate rapid increase in the rate of protein synthesis ([3H]leucine incorporation) is observed within 15 min after the initiation of germination. The data, corrected for amino acid pool changes, reveal that the rate of protein synthesis reaches its peak at 1 1/2 h, after which it decreases. A low level of RNA synthesis ([3H]uridine incorporation) is observed after 1 h and this rate increases markedly after 2 h. Analysis of the RNA species shows a low level of synthesis of all ribosomal RNA's which begins between 1 and 2 h and increases after 2 h. The synthesis of a heterogeneously distributed, poly(A)-containing fraction of RNA (presumptive mRNA) is initiated some time after 2 h and the synthesis of a small molecular weight species in the 4-5S region is observed after 3 h. Thus, it seems that Polysphondylium microcysts show sequentially initiated synthesis of RNA during germination.  相似文献   

20.
Carotenoid pigments are indispensable for plant life. They are synthesized within plastids where they provide essential functions in photosynthesis. Carotenoids serve as precursors for the synthesis of the strigolactone phytohormones, which are made from β‐carotene, and of abscisic acid (ABA), which is produced from certain xanthophylls. Despite the significant progress that has been made in our understanding of the carotenoid biosynthesis pathway, the synthesis of the xanthophyll neoxanthin has remained unknown. We report here on the isolation of a tomato (Solanum lycopersicum) mutant, neoxanthin‐deficient 1 (nxd1), which lacks neoxanthin, and on the cloning of a gene that is necessary for neoxanthin synthesis in both tomato and Arabidopsis. The locus nxd1 encodes a gene of unknown function that is conserved in all higher plants. The activity of NXD1 is essential but cannot solely support neoxanthin synthesis. Lack of neoxanthin does not significantly reduce the fitness of tomato plants in cultivated field conditions and does not impair the synthesis of ABA, suggesting that in tomato violaxanthin is a sufficient precursor for ABA production in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号