首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
3.
Integration of a DNA copy of the viral RNA genome is a crucial step in the life cycle of human immunodeficiency virus type 1 (HIV-1) and other retroviruses. While the virally encoded integrase is key to this process, cellular factors yet to be characterized are suspected to participate in its completion. DNA damage sensors such as ATM (ataxia-telangiectasia mutated), ATR (ATM- and Rad3-related), DNA-PK (DNA-dependent protein kinase), and PARP-1 [poly(ADP-ribose) polymerase 1] play central roles in responses to various forms of DNA injury and as such could facilitate HIV integration. To test this hypothesis, we examined the susceptibility to infection with wild-type HIV-1 and to transduction with a vesicular stomatitis virus G protein (VSV-G)-pseudotyped HIV-1-derived lentiviral vector of human cells stably expressing small interfering RNAs against ATM, ATR, and PARP-1. We found that integration normally occurred in these knockdown cells. Similarly, the VSV-G-pseudotyped HIV-1-based vector could effectively transduce ATM and PARP-1 knockout mouse cells as well as human cells deficient for DNA-PK. Finally, treatment of target cells with the ATM and ATR inhibitors caffeine and wortmannin was without effect in these infectivity assays. We conclude that the DNA repair enzymes ATM, ATR, DNA-PKcs, and PARP-1 are not essential for HIV-1 integration.  相似文献   

4.
Completion of early stages of retrovirus infection depends on the cell cycle. While gammaretroviruses require mitosis for proviral integration, lentiviruses are able to replicate in post-mitotic non-dividing cells. Resting cells such as naive resting T lymphocytes from peripheral blood cannot be productively infected by retroviruses, including lentiviruses, but the molecular basis of this restriction remains poorly understood. We demonstrate that in G0 resting cells (primary fibroblasts or peripheral T cells), incoming foamy retroviruses accumulate in close proximity to the centrosome, where they lie as structured and assembled capsids for several weeks. Under these settings, virus uncoating is impaired, but upon cell stimulation, Gag proteolysis and capsid disassembly occur, which allows viral infection to proceed. The data imply that foamy virus uncoating is the rate-limiting step for productive infection of primary G0 cells. Incoming foamy retroviruses can stably persist at the centrosome, awaiting cell stimulation to initiate capsid cleavage, nuclear import, and viral gene expression.  相似文献   

5.
It has long been appreciated that Cdc7 is an essential protein kinase that phosphorylates Mcm2-7 helicase subunits to promote initiation of DNA replication. In addition to its well-elucidated role in DNA replication, recent studies suggest that DDK is active in genotoxin-treated cells and may mediate aspects of the DNA damage response. However, specific role(s) of DDK and its effector targets in DNA damage signaling have not been defined. A recent study from our laboratories has identified the E3 ubiquitin ligase Rad18 as novel substrate of DDK in vitro and in human cells. Rad18 plays a central role in a post-replication DNA repair pathway termed ‘Trans-Lesion Synthesis’ (TLS) by promoting recruitment of DNA Polymerase eta (Polη) and other TLS polymerases to stalled replication forks. DDK-mediated Rad18 phosphorylation promotes Rad18-Polη complex formation and facilitates Rad18-dependent recruitment of Polη to stalled replication forks. The mechanisms that regulate Rad18-dependent TLS are incompletely understood. Our study provides the first demonstration of Rad18 regulation by direct phosphorylation and defines a novel mechanism for Rad18-dependent recruitment of TLS polymerases to stalled forks. This study also demonstrates a molecular basis for integration of TLS with S-phase progression via the essential Cdc7 kinase. These findings reveal unexpected mechanistic insights to the regulation of the TLS pathway and Polη recruitment.  相似文献   

6.
7.
We have previously shown that human immunodeficiency virus-1 (HIV-1) integrase is an unstable protein and a substrate for the N-end rule degradation pathway. This degradation pathway shares its ubiquitin-conjugating enzyme, Rad6, with the post-replication/translesion DNA repair pathway. Because DNA repair is thought to play an essential role in HIV-1 integration, we investigated whether other molecules of this DNA repair pathway could interact with integrase. We observed that co-expression of human Rad18 induced the accumulation of an otherwise unstable form of HIV-1 integrase. This accumulation occurred even though hRAD18 possesses a RING finger domain, a structure that is generally associated with E3 ubiquitin ligase function and protein degradation. Evidence for an interaction between integrase and hRad18 was obtained through reciprocal co-immunoprecipitation. Moreover we found that a 162-residue region of hRad18 (amino acids 65-226) was sufficient for both integrase stabilization and interaction. Finally, we observed that HIV-1 integrase co-localized with hRad18 in nuclear structures in a subpopulation of co-transfected cells. Taken together, these findings identify hRad18 as a novel interacting partner of HIV-1 integrase and suggest a role for post-replication/translesion DNA repair in the retroviral integration process.  相似文献   

8.
9.
Although retrovirus egress and budding have been partly unraveled, little is known about early stages of the replication cycle. In particular, retroviral uncoating, a process during which incoming retroviral cores are altered to allow the integration of the viral genome into host chromosomes, is poorly understood. To get insights into these early events of the retroviral cycle, we have used foamy complex retroviruses as a model. In this report, we show that a protease-defective foamy retrovirus is noninfectious, although it is still able to bud and enter target cells efficiently. Similarly, a retrovirus mutated in an essential viral protease-dependent cleavage site in the central part of Gag is noninfectious. Following entry, wild-type and mutant retroviruses are able to traffic along microtubules towards the microtubule-organizing center (MTOC). However, whereas nuclear import of Gag and of the viral genome was observed for the wild-type virus as early as 8 hours postinfection, incoming capsids and genome from mutant viruses remained at the MTOC. Interestingly, a specific viral protease-dependent Gag cleavage product was detected only for the wild-type retrovirus early after infection, demonstrating that cleavage of Gag by the viral protease at this stage of the virus life cycle is absolutely required for productive infection, an unprecedented observation among retroviruses.  相似文献   

10.
Integration into the host cell DNA is an essential part of the retroviral life cycle and is required for the productive replication of a retrovirus. Retroviral integration involves cleavage of the host DNA and insertion of the viral DNA, forming an integration intermediate that contains two gaps, each with a viral 5' flap. The flaps are then removed, and the gap is filled by as yet unidentified nuclease and polymerase activities. It is thought that repair of these gaps flanking the site of retroviral integration is achieved by host DNA repair machinery. The ATM and Rad3-related protein (ATR) is a member of the phosphatidylinositol 3 kinase-related family of protein kinases that play a major role in sensing and triggering repair of DNA lesions in mammalian cells. In an effort to examine the role of ATR in retroviral integration, we used RNA interference to selectively downregulate ATR and measured integration efficiency. In addition, we examined the possible role that Vpr may play in enhancing integration and, in particular, whether activation of ATR by Vpr (Roshal et al., J. Biol. Chem. 278:25879-25886, 2003) will favor human immunodeficiency virus type 1 integration. We conclude that cells in which ATR has been depleted are competent for retroviral integration. We also conclude that the presence of Vpr as a virion-bound protein does not enhance integration of a lentivirus vector in dividing cells.  相似文献   

11.
P Cejka  V Vondrejs  Z Storchová 《Genetics》2001,159(3):953-963
The RAD6 postreplicative repair group participates in various processes of DNA metabolism. To elucidate the contribution of RAD6 to starvation-associated mutagenesis, which occurs in nongrowing cells cultivated under selective conditions, we analyzed the phenotype of strains expressing various alleles of the RAD6 gene and single and multiple mutants of the RAD6, RAD5, RAD18, REV3, and MMS2 genes from the RAD6 repair group. Our results show that the RAD6 repair pathway is also active in starving cells and its contribution to starvation-associated mutagenesis is similar to that of spontaneous mutagenesis. Epistatic analysis based on both spontaneous and starvation-associated mutagenesis and UV sensitivity showed that the RAD6 repair group consists of distinct repair pathways of different relative importance requiring, besides the presence of Rad6, also either Rad18 or Rad5 or both. We postulate the existence of four pathways: (1) nonmutagenic Rad5/Rad6/Rad18, (2) mutagenic Rad5/Rad6 /Rev3, (3) mutagenic Rad6/Rad18/Rev3, and (4) Rad6/Rad18/Rad30. Furthermore, we show that the high mutation rate observed in rad6 mutants is caused by a mutator different from Rev3. From our data and data previously published, we suggest a role for Rad6 in DNA repair and mutagenesis and propose a model for the RAD6 postreplicative repair group.  相似文献   

12.
13.
Retroviral DNA integration creates a discontinuity in the host cell chromatin and repair of this damage is required to complete the integration process. As integration and repair are essential for both viral replication and cell survival, it is possible that specific interactions with the host DNA repair systems might provide new cellular targets for human immunodeficiency virus therapy. Various genetic, pharmacological, and biochemical studies have provided strong evidence that postintegration DNA repair depends on components of the nonhomologous end-joining (NHEJ) pathway (DNA-PK (DNA-dependent protein kinase), Ku, Xrcc4, DNA ligase IV) and DNA damage-sensing pathways (Atr (Atm and Rad related), gamma-H2AX). Furthermore, deficiencies in NHEJ components result in susceptibility to apoptotic cell death following retroviral infection. Here, we review these findings and discuss other ways that retroviral DNA intermediates may interact with the host DNA damage signaling and repair pathways.  相似文献   

14.
In Saccharomyces cerevisiae, Rad18 functions in post-replication repair pathways, such as error-free damage bypass involving Rad30 (Poleta) and error-prone damage bypass involving Rev3/7 (Polzeta). Chicken DT40 RAD18(-/-) cells were found to be hypersensitive to camptothecin (CPT), while RAD30(-/-) and REV3(-/-) cells, which are defective in translesion DNA synthesis, were not. RAD18(-/-) cells also showed higher levels of H2AX phosphorylation and chromosomal aberrations, particularly chromosomal gaps and breaks, upon exposure to CPT. Detailed analysis by alkaline sucrose density gradient centrifugation revealed that RAD18(-/-) and wild type cells exhibited similar rates of elongation of newly synthesized DNA in the presence or absence of low concentrations of CPT but that DNA breaks frequently occurred on both parental and nascent strands within 1h after a brief exposure to an elevated concentration of CPT, with more breaks induced in RAD18(-/-) cells than in wild type cells. These data suggest a previously unanticipated role for Rad18 in dealing with replication forks upon encountering DNA lesions induced by CPT.  相似文献   

15.
Hepatitis C virus (HCV) infection is associated with the development of hepatocellular carcinoma and putatively also non-Hodgkin's B cell lymphoma. In this study, we demonstrated that PBMCs obtained from HCV-infected patients showed frequent chromosomal aberrations and that HCV infection of B cells in vitro induced enhanced chromosomal breaks and sister chromatid exchanges. HCV infection hypersensitized cells to ionizing radiation and bleomycin and inhibited nonhomologous end-joining repair. The viral core and nonstructural protein 3 proteins were shown to be responsible for the inhibition of DNA repair, mediated by NO and reactive oxygen species. Stable expression of core protein induced frequent chromosome translocations in cultured cells and in transgenic mice. HCV core protein binds to the NBS1 protein and inhibits the formation of the Mre11/NBS1/Rad50 complex, thereby affecting ATM activation and inhibiting DNA binding of repair enzymes. Taken together, these data indicate that HCV infection inhibits multiple DNA repair processes to potentiate chromosome instability in both monocytes and hepatocytes. These effects may explain the oncogenicity and immunological perturbation of HCV infection.  相似文献   

16.
17.
Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.  相似文献   

18.
The RAD6 pathway allows replication across DNA lesions by either an error-prone or error-free mode. Error-prone replication involves translesion polymerases and requires monoubiquitylation at lysine (K) 164 of PCNA by the Rad6 and Rad18 enzymes. By contrast, the error-free bypass is triggered by modification of PCNA by K63-linked polyubiquitin chains, a reaction that requires in addition to Rad6 and Rad18 the enzymes Rad5 and Ubc13-Mms2. Here, we show that the RAD6 pathway is also critical for controlling repair pathways that act on DNA double-strand breaks. By using gapped plasmids as substrates, we found that repair in wild-type cells proceeds almost exclusively by homology-dependent repair (HDR) using chromosomal DNA as a template, whereas non-homologous end-joining (NHEJ) is suppressed. In contrast, in cells deficient in PCNA polyubiquitylation, plasmid repair occurs largely by NHEJ. Mutant cells that are completely deficient in PCNA ubiquitylation, repair plasmids by HDR similar to wild-type cells. These findings are consistent with a model in which unmodified PCNA supports HDR, whereas PCNA monoubiquitylation diverts repair to NHEJ, which is suppressed by PCNA polyubiquitylation. More generally, our data suggest that the balance between HDR and NHEJ pathways is crucially controlled by genes of the RAD6 pathway through modifications of PCNA.  相似文献   

19.
T Hong  K Drlica  A Pinter    E Murphy 《Journal of virology》1991,65(1):551-555
During infection of cells by retroviruses, some of the nonintegrated viral DNA can be found as a circular form containing two tandem, directly repeated long terminal repeats. The nucleotide sequence at the point where the long terminal repeats join (the circle junction) can be used to deduce the terminal nucleotides of the linear form of the viral DNA. Comparison of the termini of linear viral DNA with sequences at the junctions between the integrated provirus and the host chromosome has revealed that for most retroviruses 2 bp are removed from each end of the linear viral DNA during integration. For human immunodeficiency virus type 1 (HIV-1), however, sequence considerations involving primer-binding sites had suggested that only 1 bp is removed during integration. We obtained the nucleotide sequences at the ends of HIV-1 DNA by using the polymerase chain reaction to amplify fragments corresponding to the HIV-1 circle junction. Of 17 clones containing amplified sequences, 10 had identical circle junctions that contained an additional 4 bp (GTAC) relative to the integrated provirus. This indicates that, as for other retroviruses, 2 bp are removed from each end of the linear HIV-1 viral DNA during integration. The remaining seven isolates contained insertions or deletions at the circle junction.  相似文献   

20.
c-Abl plays important roles in cellular response to DNA damage. However, possible roles for Arg (Abl-related gene) in DNA damage response are unknown. Here, we show that ionizing radiation (IR)-induced Rad51 focus formation is reduced in Arg-deficient cells generated from a chicken B cell line by targeted disruption. This is consistent with the findings that Arg-deficient cells display hypersensitivity to IR, elevated frequencies of IR-induced chromosomal aberrations, and reduced targeted integration frequencies. All of these abnormalities in DNA damage repair are also observed in ATM-deficient cells but not in c-Abl-deficient cells. Finally, we show that Arg interacts with and phosphorylates Rad51 in 293T cells. These results suggest that Arg plays a role in homologous recombinational (HR) DNA repair by phosphorylating Rad51.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号