首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As reported previously, artificial selection of house mice caused a 2.7-fold increase in voluntary wheel running of four replicate selected lines compared with four random-bred control lines. Two of the selected lines developed a high incidence of a small-muscle phenotype ("mini muscles") in the plantar flexor group of the hindlimb, which apparently results from a simple Mendelian recessive allele. At generations 36-38, we measured wheel running and key contractile characteristics of soleus and medial gastrocnemius muscles from normal and mini muscles in mice from these selected lines. Mice with mini muscles ran faster and a greater distance per day than normal individuals but not longer. As expected, in mini-muscle mice the medial and lateral gastrocnemius muscles were approximately 54 and 45% the mass of normal muscles, respectively, but the plantaris muscles were not different in mass and soleus muscles were actually 30% larger. In spite of the increased mass, contractile characteristics of the soleus were unchanged in any notable way between mini and normal mice. However, medial gastrocnemius muscles in mini mice were changed markedly toward a slower phenotype, having slower twitches; demonstrated a more curved force-velocity relationship; produced about half the mass-specific isotonic power, 20-50% of the mass-specific cyclic work and power (only 10-25% the absolute power if the loss in mass is considered); and fatigued at about half the rate of normal muscles. These changes would promote increased, aerobically supported running activity but may compromise activities that require high power, such as sprinting.  相似文献   

2.
Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.  相似文献   

3.
Altered expression of skeletal muscle myosin isoforms in cancer cachexia   总被引:4,自引:0,他引:4  
Cachexia is commonly seen in cancer and ischaracterized by severe muscle wasting, but little is known about theeffect of cancer cachexia on expression of contractile protein isoforms such as myosin. Other causes of muscle atrophy shift expression ofmyosin isoforms toward increased fast (type II) isoform expression. Weinjected mice with murine C-26 adenocarcinoma cells, a tumor cell linethat has been shown to cause muscle wasting. Mice were killed 21 daysafter tumor injection, and hindlimb muscles were removed. Myosin heavychain (MHC) and myosin light chain (MLC) content was determined inmuscle homogenates by SDS-PAGE. Body weight was significantly lower intumor-bearing (T) mice. There was a significant decrease in muscle massin all three muscles tested compared with control, with the largestdecrease occurring in the soleus. Although no type IIb MHC was detectedin the soleus samples from control mice, type IIb comprised 19% of thetotal MHC in T soleus. Type I MHC was significantly decreased in T vs. control soleus muscle. MHC isoform content was not significantly different from control in plantaris and gastrocnemius muscles. Thesedata are the first to show a change in myosin isoform expression accompanying muscle atrophy during cancer cachexia.

  相似文献   

4.
Muscle fibre composition was compared among the proximal (25%), middle (50%) and distal (75%) regions of the muscle length to investigate whether compensatory overload by removal of synergists induces region-specific changes of fibre types in rat soleus and plantaris muscles. In addition, we evaluated fibre cross-sectional area in each region to examine whether fibre recruitment pattern against functional overload is nonuniform in different regions. Increases in muscle mass and fibre area confirmed a significant hypertrophic response in the overloaded soleus and plantaris muscles. Overloading increased the percentage of type I fibres in both muscles and that of type IIA fibres in the plantaris muscle, with the greater changes being found in the middle and distal regions. The percentage of type I fibres in the proximal region was higher than that of the other regions in the control soleus muscle. In the control plantaris muscle, the percentage of type I and IIA fibres in the middle region were higher than that of the proximal and distal regions. With regard to fibre size, type IIB fibre area of the middle and distal regions in the plantaris increased by 51% and 57%, respectively, with the greater changes than that of the proximal region (37%) after overloading. These findings suggest that compensatory overload promoted transformation of type II fibres into type I fibres in rat soleus and plantaris muscles, with the greater changes being found in the middle and distal regions of the plantaris muscle.  相似文献   

5.
6.
The involvement of calcineurin (CaN) and heat shock protein (Hsp) 72 in the regulation of fiber size and/or phenotype in response to functional overload (FO) was investigated. In one FO group, the plantaris muscle was overloaded by cutting the distal tendons (5-10 mm length) of the soleus and gastrocnemius of 3-week-old male Wistar rats. Cyclosporin A (CsA), a CaN inhibitor, was injected daily (5 mg/kg body weight, i.p.) in a second group of FO rats (FO+CsA group) for a 2-week period. Compared to age-matched controls (Con), the absolute and relative plantaris weights were increased in both FO groups: the hypertrophic response was attenuated in FO+CsA rats. The mean cross-sectional area of each fiber type was increased (approximately 2.0-fold) in the plantaris of FO rats: CsA treatment attenuated this effect, although the fibers were still larger than in Con rats. The percent composition of myosin heavy chain (MHC) IIb decreased from 54% in Con to 19% in FO rats, whereas types I, IIa, and IIx MHC increased in the FO rats. CsA treatment blunted the shifts in MHC isoforms: the FO+CsA group showed a smaller decrease in type IIb and a smaller increase in type IIx MHC than the FO group. The levels of CaN-A and -B proteins were higher (approximately 2.5-fold) in FO than Con rats, whereas these values were similar in Con and FO+CsA rats. Hsp72 protein levels were higher in FO (3.6-fold) and FO+CsA (5.2-fold) than Con rats, with the values being significantly higher in the FO+CsA than FO rats. CsA treatment in Con rats had no effects on muscle mass, fiber size, MHC composition, and Hsp72 or CaN levels. Combined, these results suggest that CaN levels are related to changes in both fiber size and phenotype, and that Hsp72 levels are more related to the levels of stress added to the muscle rather than to increases in the slow fiber phenotype in functionally overloaded rat plantaris muscles.  相似文献   

7.
The purpose of this study was to determine whether skeletal muscle mass, myofibrillar adenosinetriphosphatase activity, and the expression of myosin heavy (MHC) and light chain subunits are differentially affected in juvenile (4 wk) and young adult (12 wk) rats by a hypertrophic growth stimulus. Hypertrophy of the plantaris or soleus was studied 4 wk after ablation of either two [gastrocnemius (GTN) and soleus or plantaris] or one (GTN) synergistic muscle(s). There was no difference in the relative magnitude of hypertrophy because of age. Plantaris myofibrillar adenosinetriphosphatase activity was decreased 21 and 12% in juvenile and adult rats, respectively, as a result of ablation of both the GTN and soleus. Slow myosin light chain isoforms (1s and 2s) were expressed to a greater extent in hypertrophied plantaris muscles of both ages, but the increase in 1s was greater in juvenile rats. The relative expression of slow beta-MHC in hypertrophied plantaris muscles increased by 470 and 350%, whereas MHC IIb decreased by 70 and 33% in juvenile and adult rats, respectively. The relative expression of MHC IIa increased (56%) in the plantaris after ablation in juvenile rats only. These shifts in myosin subunit expression and the increases in mass were generally about one-half the magnitude when only the GTN was removed. There were no detectable myosin shifts in hypertrophied soleus muscles. Although the extent of muscle hypertrophy is similar, the shifts in myosin subunits were greater in juvenile than in young adult rats.  相似文献   

8.
Skeletal muscle adaptations to microgravity exposure in the mouse.   总被引:4,自引:0,他引:4  
To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.  相似文献   

9.
Patterns of fuel use during locomotion are determined by exercise intensity and duration, and are remarkably similar across many mammalian taxa. However, as lipids have a high yield of ATP per mole and are stored in large quantities, their use should be favored in endurance-adapted animals. To examine the capacity for alteration or differential regulation of fuel-use patterns, we studied two lines of mice that had been selectively bred for high voluntary wheel running (HR), including one characterized by small hindlimb muscles (HR(mini)) and one without this phenotype (HR(normal)), as well as a nonselected control line. We evaluated: 1) maximal aerobic capacity (Vo(2 max)); 2) whole body fuel use during exercise by indirect calorimetry; 3) cardiac properties; and 4) many factors involved in regulating lipid use. HR mice achieved an increased Vo(2 max) compared with control mice, potentially in part due to HR cardiac capacities for metabolic fuel oxidation and the larger relative heart size of HR(mini) mice. HR mice also exhibited enhanced whole body lipid oxidation rates at 66% Vo(2 max), but HR(mini), HR(normal), and control mice did not differ in the proportional mix of fuels sustaining exercise (% total Vo(2)). However, HR(mini) gastrocnemius muscle had elevated fatty acid translocase (FAT/CD36) sarcolemmal protein and cellular mRNA, fatty acid binding protein (H-FABP) cytosolic protein, peroxisome proliferator-activated receptor (PPAR) α mRNA, and mass-specific activities of citrate synthase, β-hydroxyacyl-CoA dehydrogenase, and hexokinase. Therefore, high-running mouse lines had whole body fuel oxidation rates commensurate with maximal aerobic capacity, despite notable differences in skeletal muscle metabolic phenotypes.  相似文献   

10.
Calcineurin (CaN) has been implicated as a signaling molecule that can transduce physiological stimuli (e.g., contractile activity) into molecular signals that initiate slow-fiber phenotypic gene expression and muscle growth. To determine the influence of muscle phenotype and atrophy on CaN levels in muscle, the levels of soluble CaN in rat muscles of varying phenotype, as assessed by myosin heavy chain (MHC)-isoform proportions, were determined by Western blotting. CaN levels were significantly greater in the plantaris muscle containing predominantly fast (IIx and IIb) MHC isoforms, compared with the soleus (predominantly type I MHC) or vastus intermedius (VI, contains all 4 adult MHC isoforms). Three months after a complete spinal cord transection (ST), the CaN levels in the VI muscle were significantly reduced, despite a significant increase in fast MHC isoforms. Surprisingly, the levels of CaN in the VI were highly correlated with muscle mass but not MHC isoform proportions in ST and control rats. These data demonstrate that CaN levels in skeletal muscle are highly correlated to muscle mass and that the normal relationship with phenotype is lost after ST.  相似文献   

11.
1. Maximum compensatory hypertrophy of the soleus and plantaris muscle in male rats is attained seven days after tenotomy of the gastrocnemius muscle (39% and 9% respectively). When tenotomy of the gastrocnemius was performed seven days ater hypophysectomy, hypertrophy in these two muscles was aproximately half that found in control animals. 2. After 81-day castration of young male rats the weight of the saleus and plantaris was reduced and hypertrophy following tenotomy of the gastrocneumius muscle did not develop. 3. Chronically castrated rats received testosterone two weeks prior to tenotomy of the gastrocnemius and a week during the muscle hypertrophy phase. Hypertrophy of the soleus in castrated rats which had received testosterone seven days after tenotomy of the gastrocnemius was 25% as compared with muscles of castrated animals. The corresponding value in the plantaris muscle was 10%. 4. These results indicate that even calf muscles of the rat, namely the soleus and plantaris muscles, are significantly affected by testosterone under these conditions, although it is not, as yet, clear whether its action is direct or indirect.  相似文献   

12.
Heat stress inhibits skeletal muscle hypertrophy   总被引:1,自引:1,他引:0       下载免费PDF全文
Heat shock proteins (Hsps) are molecular chaperones that aid in protein synthesis and trafficking and have been shown to protect cells/tissues from various protein damaging stressors. To determine the extent to which a single heat stress and the concurrent accumulation of Hsps influences the early events of skeletal muscle hypertrophy, Sprague-Dawley rats were heat stressed (42 degrees C, 15 minutes) 24 hours prior to overloading 1 plantaris muscle by surgical removal of the gastrocnemius muscle. The contralateral plantaris muscles served as controls. Heat-stressed and/or overloaded plantaris muscles were assessed for muscle mass, total muscle protein, muscle protein concentration, Type I myosin heavy chain (Type I MHC) content, as well as Hsp72 and Hsp25 content over the course of 7 days following removal of the gastrocnemius muscle. As expected, in non-heat-stressed animals, muscle mass, total muscle protein and MHC I content were significantly increased (P < 0.05) following overload. In addition, Hsp25 and Hsp72 increased significantly after 2 and 3 days of overload, respectively. A prior heat stress-elevated Hsp25 content to levels similar to those measured following overload alone, but heat stress-induced Hsp72 content was increased significantly greater than was elicited by overload alone. Moreover, overloaded muscles from animals that experienced a prior heat stress showed a lower muscle mass increase at 5 and 7 days; a reduced total muscle protein elevation at 3, 5, and 7 days; reduced protein concentration; and a diminished Type I MHC content accumulation at 3, 5, and 7 days relative to nonheat-stressed animals. These data suggest that a prior heat stress and/or the consequent accumulation of Hsps may inhibit increases in muscle mass, total muscle protein content, and Type I MHC in muscles undergoing hypertrophy.  相似文献   

13.
14.
The aim of this study was to examine the morphological adaptation of the capillary network in hypertrophied plantaris muscles by examining both capillary numbers and luminal circumferences. Hypertrophy of the plantaris muscle was induced by myectomy of the gastrocnemius muscle. This hypertrophy was characterised by increases in muscle mass and fibre cross-sectional area. All capillary parameters were determined using morphometric methods in perfusion-fixed plantaris muscle. Increased capillary-to-fibre ratio was observed in the overloaded plantaris muscle while no change was observed in the capillary luminal circumference. No differences were observed in the capillary density and the capillary-to-fibre perimeter ratio of the normal and the hypertrophied plantaris muscle. These results indicated that chronic overload-induced neocapillarization, but not enlargement of capillary luminal circumference, contributed to the prevention of decreases in the capillary-to-fibre perimeter ratio in the plantaris muscle in the hypertrophied process. Accepted: 13 August 1996  相似文献   

15.
The aim of the study was to investigate the palmitic acid incorporation into intramuscular acylglycerols in perfused hind-limb skeletal muscles of different fibre types in rats either fasted for 48 h or exposed to cold (6 °C) for 12 h. Hind-limb preparations of fasted and cold exposed rats were perfused with buffers containing tritium labelled and cold palmitic acid. Palmitic acid incorporation into intracellular lipid pools in the soleus, plantaris, red and white gastrocnemius and red and white quadriceps was measured. It was found that fasting increased approximately 2-fold palmitic acid incorporation in all muscles examined regardless of the fibre type composition of the muscle. On the other hand, exposure to cold had no effect on the palmitic acid incorporation into intramuscular acylglycerols regardless the muscle fibre type. The increased incorporation of palmitic acid into acylglycerols in fasted animals is in line with data showing that 48 h fasting stimulates the expression of plasma membrane proteins putatively facilitating fatty acid uptake. It appears that although 12 h cold exposure increases the use of fatty acids as energy substrates it does not alter the incorporation of palmitic acid into intramuscular acylglycerols in the perfused rat hind-limb.  相似文献   

16.
Although the soleus muscle comprises only 6% of the ankle plantar flexor mass in the rat, a major role in stance and walking has been ascribed to it. The purpose of this study was to determine if removal of the soleus muscle would result in adaptations in the remaining gastrocnemius and plantaris muscles due to the new demands for force production imposed on them during stance or walking. A second purpose was to determine whether the mass or the fiber type of the muscle(s) removed was a more important determinant of compensatory adaptations. Male Sprague-Dawley rats underwent bilateral removal of soleus muscle, plantaris muscle, or both muscles. For comparison, compensatory hypertrophy was induced in soleus and plantaris muscles by gastrocnemius muscle ablation. After forty days, synergist muscles remaining intact were removed. Mass, and oxidative, glycolytic, and contractile enzyme activities were determined. Despite its role in stance and slow walking, removal of the soleus muscle did not elicit a measurable alteration in muscle mass, or in citrate synthase, lactate dehydrogenase, or myofibrillar ATPase activity in gastrocnemius or plantaris muscles. Similarly, removal of the plantaris muscle, or soleus and plantaris muscles, had no effect on the gastrocnemius muscle, suggesting that this muscle was able to easily meet the new demands placed on it. These results suggest that amount of muscle mass removed, rather than fiber type, is the most important stimulus for compensatory hypertrophy. They also suggest that slow-twitch motor units in the gastrocnemius muscle play an important role during stance and locomotion in the intact animal.  相似文献   

17.
Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4Minimsc. Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics.  相似文献   

18.
We have used selective breeding with house mice to study coadaptation of morphology and physiology with the evolution of high daily levels of voluntary exercise. Here, we compared hindlimb bones and muscle masses from the 11th generation of four replicate High Runner (HR) lines of house mice bred for high levels of voluntary wheel running with four non‐selected control (C) lines. Mass, length, diameter, and depth of the femur, tibia‐fibula, and metatarsal bones, as well as masses of gastrocnemius and quadriceps muscles, were compared by analysis of covariance with body mass or body length as the covariate. Mice from HR lines had relatively wider distal femora and deeper proximal tibiae, suggesting larger knee surface areas, and larger femoral heads. Sex differences in bone dimensions were also evident, with males having thicker and shorter hindlimb bones when compared with females. Several interactions between sex, linetype, and/or body mass were observed, and analyses split by sex revealed several cases of sex‐specific responses to selection. A subset of the HR mice in two of the four HR lines expressed the mini‐muscle phenotype, characterized mainly by an ~50% reduction in hindlimb muscle mass, caused by a Mendelian recessive mutation, and known to have been under positive selection in the HR lines. Mini‐muscle individuals had elongated distal elements, lighter and thinner hindlimb bones, altered 3rd trochanter muscle insertion positions, and thicker tibia‐fibula distal widths. Finally, several differences in levels of directional or fluctuating asymmetry in bone dimensions were observed between HR and C, mini‐ and normal‐muscled mice, and the sexes. This study demonstrates that skeletal dimensions and muscle masses can evolve rapidly in response to directional selection on locomotor behavior.  相似文献   

19.
The distribution of the intermediate filament proteins (IFP) desmin and vimentin was studied in gastrocnemius, plantaris and soleus muscles of the dystrophic mouse strain ReJ 129 during postnatal development. Special attention was paid to the overall morphological changes in the distribution of these cytoskeletal constituents in degenerating and regenerating muscle fibres. In contrast to their normal counterparts, the dystrophic mice (ReJ 129 dy/dy) appeared to develop four types of distinct muscle fibres with immunohistochemically detectable aberrant IFP patterns. The distribution of desmin IFP differed in the dystrophic muscle fibres as compared to the normal fibres in that juxtanuclear aggregates of IFP were frequently seen. In contrast to the recent literature we conclude that these cells are regenerated myofibres exhibiting defective nuclear migration.  相似文献   

20.
beta-Adrenoceptor agonists are reported to induce skeletal muscle hypertrophy and hence serve as valuable adjunct to the treatment of wasting disorders. In the present study, we attempted to find out whether metabolic and physiologic characteristics of fibres are important in determining skeletal muscle response to clenbuterol (an adrenergic receptor agonist) therapy, as proposed in the treatment of wasting disorders. The treatment of mice with clenbuterol (2 mg/kg body wt for 30 days) resulted in skeletal muscle hypertrophy, more common amongst fast-twitch glycolytic fibres/muscle, with increase in body mass and a parallel rise in muscle mass to body mass ratio. Measurement of fibre diameters in soleus (rich in slow-twitch oxidative fibres), ALD or anterior latissimus dorsi (with a predominance of fast-twitch glycolytic fibres) and gastrocnemius (a mixed-type of muscle) from clenbuterol-treated mice for 30 days revealed noticeable increase in the per cent population of narrow slow-twitch fibre and a corresponding decline in white-type or fast-twitch glycolytic fibres in gastrocnemius and ALD. As revealed by counting of muscle cells in soleus, narrow red fibres declined with corresponding increase in white-type glycolytic fibres population. A significant decline in the succinic dehydrogenase activity was observed, thereby suggesting abnormality in oxidative activity of skeletal muscles in response to clenbuterol therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号