首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Legionella pneumophila , the causative agent of Legionnaires' disease, replicates within a specific vacuole in amoebae and macrophages. To form these ' Legionella -containing vacuoles' (LCVs), the bacteria employ the Icm/Dot type IV secretion system and effector proteins, some of which anchor to the LCV membrane via the host glycolipid phosphatidylinositol 4-phosphate [PtdIns(4) P ]. Here we analysed the role of inositol polyphosphate 5-phosphatases (IP5Ps) during L. pneumophila infections. Bacterial replication and LCV formation occurred more efficiently in Dictyostelium discoideum amoebae lacking the IP5P Dd5P4, a homologue of human OCRL1 (Oculocerebrorenal syndrome of Lowe), implicated in retrograde endosome to Golgi trafficking. The phenotype was complemented by Dd5P4 but not the catalytically inactive 5-phosphatase. Ectopically expressed Dd5P4 or OCRL1 localized to LCVs in D. discoideum via an N-terminal domain previously not implicated in membrane targeting, and OCRL1 was also identified on LCVs in macrophages. Dd5P4 was catalytically active on LCVs and accumulated on LCVs harbouring wild-type but not Δ icmT mutant L. pneumophila . The N-terminal domain of OCRL1 bound L. pneumophila LpnE, a Sel1-like repeat protein involved in LCV formation, which localizes to LCVs and selectively binds PtdIns(3) P . Our results indicate that OCRL1 restricts intracellular growth of L. pneumophila and binds to LCVs in association with LpnE.  相似文献   

2.
Legionella pneumophila, the causative agent of Legionnaires' disease, uses the intracellular multiplication/defective organelle trafficking (Icm/Dot) type IV secretion system to establish within amoebae and macrophages an endoplasmic reticulum (ER)-derived replication-permissive compartment, the Legionella-containing vacuole (LCV). The Icm/Dot substrate SidC and its paralogue SdcA anchor to LCVs via phosphatidylinositol-4 phosphate [PtdIns(4)P]. Here we identify the unique 20 kDa PtdIns(4)P-binding domain of SidC, which upon heterologous expression in Dictyostelium binds to LCVs and thus is useful as a PtdIns(4)P-specific probe. LCVs harbouring L. pneumophilaDeltasidC-sdcA mutant bacteria recruit ER and ER-derived vesicles less efficiently and carry endosomal but not lysosomal markers. The phenotypes are complemented by supplying sidC on a plasmid. L. pneumophilaDeltasidC-sdcA grows at wild-type rate in calnexin-negative LCVs, suggesting that communication with the ER is dispensable for establishing a replicative compartment. The amount of SidC and calnexin is directly proportional on isolated LCVs, and in a cell-free system, the recruitment of calnexin-positive vesicles to LCVs harbouring DeltasidC-sdcA mutant bacteria is impaired. Beads coated with purified SidC or its 70 kDa N-terminal fragment recruit ER vesicles in Dictyostelium and macrophage lysates. Our results establish SidC as an L. pneumophila effector protein, which anchors to PtdIns(4)P on LCVs and recruits ER vesicles to a replication-permissive vacuole.  相似文献   

3.
The causative agent of Legionnaires'' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.  相似文献   

4.
Legionella pneumophila , the causative agent of Legionnaires' disease, replicates in macrophages and amoebae within ' Legionella -containing vacuoles' (LCVs), which communicate with the early secretory pathway and the endoplasmic reticulum. Formation of LCVs requires the bacterial Icm/Dot type IV secretion system. The Icm/Dot-translocated effector protein SidC selectively anchors to LCVs by binding the host lipid phosphatidylinositol-4-phosphate (PtdIns(4) P ). Here, we describe a novel and simple approach to purify intact vacuoles formed by L. pneumophila within Dictyostelium discoideum by using magnetic immunoseparation with an antibody against SidC, followed by density gradient centrifugation. To monitor LCV purification by fluorescence microscopy, we used Dictyostelium producing the LCV marker calnexin-GFP and L. pneumophila labeled with the red fluorescent protein DsRed. A proteome analysis of purified LCVs by liquid chromatography coupled to tandem mass spectrometry revealed 566 host proteins, including known LCV components, such as the small GTPases Arf1, Rab1 and Rab7. Rab8, an endosomal regulator of the late secretory pathway originating from the trans Golgi network, and the endosomal GTPase Rab14 were identified as novel LCV components, which were found to be present on vacuoles harboring wild-type but not Icm/Dot-deficient L. pneumophila . Thus, LCVs also communicate with the late secretory and endosomal pathways. Depletion of Rab8 or Arf1 by RNA interference reduced the amount of SidC on LCVs, indicating that the GTPases promote the recruitment of Legionella effectors by regulating the level of PtdIns(4) P .  相似文献   

5.
Ge J  Shao F 《Cellular microbiology》2011,13(12):1870-1880
Legionella pneumophila, the causative agent of Legionnaires' disease, infects and replicates in macrophages and amoebas. Following internalization, L. pneumophila resides in a vacuole structure called Legionella-containing vacuole (LCV). The LCV escapes from the endocytic maturation process and avoids fusion with the lysosome, a hallmark of Legionella pathogenesis. Interference with the secretory vesicle transport and avoiding lysosomal targeting render the LCV permissive for L. pneumophila intracellular replication. Central to L. pneumophila pathogenesis is a defect in the organelle trafficking/intracellular multiplication (Dot/Icm) type IV secretion system that translocates a large number of effector proteins into host cells. Many of the Dot/Icm effectors employ diverse and sophisticated biochemical strategies to manipulate the host vesicular transport system, playing an important role in LCV biogenesis and trafficking. Similar to other bacterial pathogens, L. pneumophila also delivers effector proteins to modulate or counteract host innate immune defence pathways such as the NF-κB and apoptotic signalling. This review summarizes the known functions and mechanisms of Dot/Icm effectors that target host membrane trafficking and innate immune defence pathways.  相似文献   

6.
The intracellular pathogen Legionella pneumophila avoids fusion with lysosomes and subverts membrane transport from the endoplasmic reticulum to create an organelle that supports bacterial replication. Transport of endoplasmic reticulum-derived vesicles to the Legionella-containing vacuole (LCV) requires bacterial proteins that are translocated into host cells by a type IV secretion apparatus called Dot/Icm. Recent observations have revealed recruitment of the host GTPase Rab1 to the LCV by a process requiring the Dot/Icm system. Here, a visual screen was used to identify L. pneumophila mutants with defects in Rab1 recruitment. One of the factors identified in this screen was DrrA, a new Dot/Icm substrate protein translocated into host cells. We show that DrrA is a potent and highly specific Rab1 guanine nucleotide-exchange factor (GEF). DrrA can disrupt Rab1-mediated secretory transport to the Golgi apparatus by competing with endogenous exchange factors to recruit and activate Rab1 on plasma membrane-derived organelles. These data establish that intracellular pathogens have the capacity to directly modulate the activation state of a specific member of the Rab family of GTPases and thus further our understanding of the mechanisms used by bacterial pathogens to manipulate host vesicular transport.  相似文献   

7.
Many bacterial pathogens require a functional type IV secretion system (T4SS) for virulence. Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Dot/Icm T4SS to inject a large number of protein substrates into its host, thereby altering phagosome trafficking. The L. pneumophila T4SS substrate SdeA has been shown to require the accessory factor IcmS for its export. IcmS, defined as a type IV adaptor, exists as a heterodimer with IcmW and this complex functions in a manner similar to a type III secretion chaperone. Here we report an interaction between IcmS and the previously identified virulence factor LvgA. Similar to the icmS mutant, the lvgA mutant appears to assemble a fully functional Dot/Icm complex. Both LvgA and IcmS are small, acidic proteins localized to the cytoplasm and are not exported by the Dot/Icm system, suggesting they form a novel type IV adaptor complex. Inactivation of lvgA causes a minimal defect in growth in the human monocytic cell line U937 and the environmental host Acanthamoeba castellanii. However, the lvgA mutant was severely attenuated for intracellular growth of L. pneumophila in mouse macrophages, suggesting LvgA may be a critical factor that confers host specificity.  相似文献   

8.
The Dot/Icm type IV secretion system of Legionella pneumophila is essential for evasion of endocytic fusion and for activation of caspase-3 during early stages of infection of macrophages, but the mechanisms of manipulating these host cell processes are not known. Here, we show that caspase-3 activation by L. pneumophila is independent of all the known apoptotic pathways that converge on the activation of caspase-3. The cytoplasmic proteins IcmS, IcmR and IcmQ, which are involved in secretion of Dot/Icm effectors, are required for caspase-3 activation. Pretreatment of U937 macrophages and human peripheral blood monocytes (hPBM) with the capase-3 inhibitor (DEVD-fmk) or the paninhibitor of caspases (Z-VAD-fmk) before infection blocks intracellular replication of L. pneumophila in a dose-dependent manner. Inhibition of caspase-3 results in co-localization of the L. pneumophila-containing phagosome (LCP) with the late endosomal/lysosomal marker Lamp-2, and the LCP contains lysosomal enzymes, similar to the dotA mutant, which is defective in caspase-3 activation. However, activation of caspase-3 before infection does not rescue the replication defect of the dotA mutant. Interestingly, inhibition of caspase-3 after a 15 or 30 min infection period by the parental strain has no detectable effect on the formation of a replicative niche. The Dot/Icm-mediated activation of caspase-3 by L. pneumophila specifically cleaves, in a dose- and time-dependent manner, the Rab5 effector Rabaptin-5, which maintains Rab5-GTP on the endosomal membrane. In addition, PI3 kinase, which is a crucial effector of Rab5 downstream of Rababptin-5, is not required for intracellular replication. Using single-cell analysis, we show that apoptosis is not evident in the infected cell until bacterial replication results in > 20 bacteria per cell. We conclude that activation of caspase-3 by the Dot/Icm virulence system of L. pneumophila is essential for halting biogenesis of the LCP through the endosomal/lysosomal pathway, and that this is associated with the cleavage of Rabpatin-5.  相似文献   

9.
The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.  相似文献   

10.
Legionella pneumophila is an opportunistic human pathogen that replicates within environmental amoebae including Acanthamoeba castellanii and Dictyostelium discoideum. The Icm/Dot type IV secretion system promotes phagocytosis and intracellular replication of L. pneumophila in an endoplasmic reticulum-derived 'Legionella-containing vacuole' (LCV). L. pneumophila adopts a biphasic life cycle consisting of a replicative growth phase and a transmissive (stationary) phase, the latter of which is characterized by the preferential expression of genes required for motility and virulence. A bioinformatic analysis of the L. pneumophila genome revealed a gene cluster homologous to the Vibrio cholerae cqsAS genes, encoding a putative quorum sensing autoinducer synthase (lqsA) and a sensor kinase (lqsS), which flank a novel response regulator (lqsR). We report here that an L. pneumophila lqsR deletion mutant grew in broth with the same rate as wild-type bacteria, but entered the replicative growth phase earlier. Overexpression of lqsR led to an elongated morphology of the bacteria. The lqsR mutant strain was found to be more salt-resistant and impaired for intracellular growth in A. castellanii, D. discoideum and macrophages, formation of the ER-derived LCV and toxicity. Moreover, L. pneumophila lacking LqsR, as well as strains lacking the stationary sigma factor RpoS or the two-component response regulator LetA, were phagocytosed less efficiently by A. castellanii, D. discoideum or macrophages. The expression of lqsR was dependent on RpoS and, to a lesser extent, also on LetA. DNA microarray experiments revealed that lqsR regulates the expression of genes involved in virulence, motility and cell division, consistent with a role for LqsR in the transition from the replicative to the transmissive (virulent) phase. Our findings indicate that LqsR is a novel pleiotropic regulator involved in RpoS- and LetA-controlled interactions of L. pneumophila with phagocytes.  相似文献   

11.
Hilbi H 《Cellular microbiology》2006,8(11):1697-1706
Phosphoinositide metabolism plays a pivotal role in the regulation of receptor-mediated signal transduction, actin remodelling and membrane dynamics. Phosphoinositides co-ordinate these processes by recruiting protein effectors to distinct cellular membranes in a time- and organelle-dependent manner. Intracellular bacterial pathogens interfere with phosphoinositide metabolism to direct their entry into eukaryotic cells, form replication-permissive vacuoles, modulate apoptosis, or trigger fluid secretion. Gram-negative pathogens such as Legionella pneumophila, Shigella flexneri, or Salmonella enterica employ secretion systems to invade host cells by 'pathogen-triggered phagocytosis' and thereby bypass a requirement for phosphatidylinositol 3-kinases [PI(3)Ks]. Contrarily, 'receptor-mediated phagocytosis' of Yersinia spp., Listeria monocytogenes and other pathogenic bacteria depends on PI(3)Ks. Secreted effector proteins have been found to directly bind to and modify host cell phosphoinositides, thus modulating phagocytosis and intracellular survival of the pathogens. These effectors include L. pneumophila proteins that specifically attach to phosphatidylinositol 4-phosphate [PI(4)P] on the Legionella-containing vacuole, and phosphoinositide phosphatases produced by S. flexneri, S. enterica or Mycobacterium tuberculosis. This review covers current knowledge about subversion of host cell phosphoinositide metabolism by intracellular bacterial pathogens with an emphasis on recently identified secreted effector proteins directly engaging phosphoinositides.  相似文献   

12.
The causative agent of Legionnaires disease, Legionella pneumophila, forms a replicative vacuole in phagocytes by means of the intracellular multiplication/defective organelle trafficking (Icm/Dot) type IV secretion system and translocated effector proteins, some of which subvert host GTP and phosphoinositide (PI) metabolism. The Icm/Dot substrate SidC anchors to the membrane of Legionella-containing vacuoles (LCVs) by specifically binding to phosphatidylinositol 4-phosphate (PtdIns(4)P). Using a nonbiased screen for novel L. pneumophila PI-binding proteins, we identified the Rab1 guanine nucleotide exchange factor (GEF) SidM/DrrA as the predominant PtdIns(4)P-binding protein. Purified SidM specifically and directly bound to PtdIns(4)P, whereas the SidM-interacting Icm/Dot substrate LidA preferentially bound PtdIns(3)P but also PtdIns(4)P, and the L. pneumophila Arf1 GEF RalF did not bind to any PIs. The PtdIns(4)P-binding domain of SidM was mapped to the 12-kDa C-terminal sequence, termed “P4M” (PtdIns4P binding of SidM/DrrA). The isolated P4M domain is largely helical and displayed higher PtdIns(4)P binding activity in the context of the α-helical, monomeric full-length protein. SidM constructs containing P4M were translocated by Icm/Dot-proficient L. pneumophila and localized to the LCV membrane, indicating that SidM anchors to PtdIns(4)P on LCVs via its P4M domain. An L. pneumophila ΔsidM mutant strain displayed significantly higher amounts of SidC on LCVs, suggesting that SidM and SidC compete for limiting amounts of PtdIns(4)P on the vacuole. Finally, RNA interference revealed that PtdIns(4)P on LCVs is specifically formed by host PtdIns 4-kinase IIIβ. Thus, L. pneumophila exploits PtdIns(4)P produced by PtdIns 4-kinase IIIβ to anchor the effectors SidC and SidM to LCVs.The Gram-negative pathogen Legionella pneumophila is the causative agent of Legionnaires disease, but it evolved as a parasite of various species of environmental predatory protozoa, including the social amoeba Dictyostelium discoideum (1, 2). The human disease is linked to the inhalation of contaminated aerosols, followed by replication in alveolar macrophages. To accommodate the transfer between host cells, L. pneumophila alternates between replicative and transmissive phases, the regulation of which includes an apparent quorum-sensing system (35).In macrophages and amoebae, L. pneumophila forms a replicative compartment, the Legionella-containing vacuole (LCV).3 LCVs avoid fusion with lysosomes (6), intercept vesicular traffic at endoplasmic reticulum (ER) exit sites (7), and fuse with the ER (810). The uptake of L. pneumophila and formation of LCVs in macrophages and amoebae depends on the Icm/Dot type IV secretion system (T4SS) (1114). Although more than 100 Icm/Dot substrates (“effector” proteins) have been identified to date, only few are functionally characterized, including effectors that interfere with host cell signal transduction, vesicle trafficking, or apoptotic pathways (1518).Two Icm/Dot-translocated substrates, SidM/DrrA (19, 20) and RalF (21), have been characterized as guanine nucleotide exchange factors (GEFs) for the Rho subfamily of small GTPases. These bacterial GEFs are recruited to and activate their targets on LCVs. Small GTPases of the Rho subfamily are involved in many eukaryotic signal transduction pathways and in actin cytoskeleton regulation (22). Inactive Rho GTPases bind GDP and a guanine nucleotide dissociation inhibitor (GDI). The GTPases are activated by removal of the GDI and the exchange of GDP with GTP by GEFs, which promotes the interaction with downstream effector proteins, such as protein or lipid kinases and various adaptor proteins. The cycle is closed by hydrolysis of the bound GTP, which is mediated by GTPase-activating proteins.SidM is a GEF for Rab1, which is essential for ER to Golgi vesicle transport, and additionally, SidM acts as a GDI displacement factor (GDF) to activate Rab1 (23, 24). The function of SidM is assisted by the Icm/Dot substrate LidA, which also localizes to LCVs. LidA preferentially binds to activated Rab1, thus supporting the recruitment of early secretory vesicles by SidM (19, 20, 23, 25, 26). Another Icm/Dot substrate, LepB (27), contributes to Rab1-mediated membrane cycling by inactivating Rab1 through its GTPase-activating protein function, thus acting as an antagonist of SidM (24).The Icm/Dot substrate RalF recruits and activates the small GTPase ADP-ribosylation factor 1 (Arf1), which is involved in retrograde vesicle transport from Golgi to ER (21). Dominant negative Arf1 (7, 28) or knockdown of Arf1 by RNA interference (29) impairs the formation of LCVs, as well as the recruitment of the Icm/Dot substrate SidC to the LCV (30).SidC and its paralogue SdcA localize to the LCV membrane (31), where the proteins specifically bind to the host cell lipid phosphatidylinositol 4-phosphate (PtdIns(4)P) (32, 33). Phosphoinositides (PIs) regulate eukaryotic receptor-mediated signal transduction, actin remodeling, and membrane dynamics (34, 35). PtdIns(4)P is present on the cytoplasmic membrane, but localizes preferentially to the trans-Golgi network (TGN), where this PI is produced by an Arf-dependent recruitment of PtdIns(4)P kinase IIIβ (PI4K IIIβ) (36) to promote trafficking along the secretory pathway. Recently, PtdIns(4)P was found to also mediate the export of early secretory vesicles from ER exit sites (37). At present, the L. pneumophila effector proteins that mediate exploitation of host PI signaling remain ill defined.In a nonbiased screen for L. pneumophila PI-binding proteins using different PIs coupled to agarose beads, we identified SidM as a major PtdIns(4)P-binding effector. We mapped its PtdIns(4)P binding activity to a novel P4M domain within a 12-kDa C-terminal sequence. SidM constructs, including the P4M domain, were found to be translocated and bind the LCV membrane, where the levels of PtdIns(4)P are controlled by PI4K IIIβ.  相似文献   

13.
Many gram-negative pathogens use a type IV secretion system (T4SS) to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein.  相似文献   

14.
Legionella pneumophila is an intracellular pathogen that uses effector proteins translocated by the Dot/Icm type IV secretion system to modulate host cellular processes. Here we investigate the dynamics of subcellular structures containing ubiquitin during L. pneumophila infection of phagocytic host cells. The Dot/Icm system mediated the formation of K48 and K63 poly-ubiquitin conjugates to proteins associated with L. pneumophila -containing vacuoles in macrophages and dendritic cells, suggesting that regulatory events and degradative events involving ubiquitin are regulated by bacterial effectors during infection. Stimulation of TLR2 on the surface of macrophages and dendritic cells by L. pneumophila- derived molecules resulted in the production of ubiquitin-rich dendritic cell aggresome-like structures (DALIS). Cells infected by L. pneumophila with a functional Dot/Icm system, however, failed to produce DALIS. Suppression of DALIS formation did not affect the accumulation of ubiquitinated proteins on vacuoles containing L. pneumophila. Examining other species of Legionella revealed that Legionella jordanis was unable to suppress DALIS formation after creating a ubiquitin-decorated vacuole. Thus, the L. pneumophila Dot/Icm system has the ability to modulate host processes to promote K48 and K63 ubiquitin conjugates on proteins at the vacuole membrane, and independently suppress cellular events required for the formation of DALIS.  相似文献   

15.
16.
The pathogenic bacterium Legionella pneumophila replicates in host cells within a distinct ER‐associated compartment termed the Legionella‐containing vacuole (LCV). How the dynamic ER network contributes to pathogen proliferation within the nascent LCV remains elusive. A proteomic analysis of purified LCVs identified the ER tubule‐resident large GTPase atlastin3 (Atl3, yeast Sey1p) and the reticulon protein Rtn4 as conserved LCV host components. Here, we report that Sey1/Atl3 and Rtn4 localize to early LCVs and are critical for pathogen vacuole formation. Sey1 overproduction promotes intracellular growth of L. pneumophila, whereas a catalytically inactive, dominant‐negative GTPase mutant protein, or Atl3 depletion, restricts pathogen replication and impairs LCV maturation. Sey1 is not required for initial recruitment of ER to PtdIns(4)P‐positive LCVs but for subsequent pathogen vacuole expansion. GTP (but not GDP) catalyzes the Sey1‐dependent aggregation of purified, ER‐positive LCVs in vitro. Thus, Sey1/Atl3‐dependent ER remodeling contributes to LCV maturation and intracellular replication of L. pneumophila.  相似文献   

17.
18.
The freshwater ciliate Tetrahymena sp. efficiently ingested, but poorly digested, virulent strains of the gram-negative intracellular pathogen Legionella pneumophila. Ciliates expelled live legionellae packaged in free spherical pellets. The ingested legionellae showed no ultrastructural indicators of cell division either within intracellular food vacuoles or in the expelled pellets, while the number of CFU consistently decreased as a function of time postinoculation, suggesting a lack of L. pneumophila replication inside Tetrahymena. Pulse-chase feeding experiments with fluorescent L. pneumophila and Escherichia coli indicated that actively feeding ciliates maintain a rapid and steady turnover of food vacuoles, so that the intravacuolar residence of the ingested bacteria was as short as 1 to 2 h. L. pneumophila mutants with a defective Dot/Icm virulence system were efficiently digested by Tetrahymena sp. In contrast to pellets of virulent L. pneumophila, the pellets produced by ciliates feeding on dot mutants contained very few bacterial cells but abundant membrane whorls. The whorls became labeled with a specific antibody against L. pneumophila OmpS, indicating that they were outer membrane remnants of digested legionellae. Ciliates that fed on genetically complemented dot mutants produced numerous pellets containing live legionellae, establishing the importance of the Dot/Icm system to resist digestion. We thus concluded that production of pellets containing live virulent L. pneumophila depends on bacterial survival (mediated by the Dot/Icm system) and occurs in the absence of bacterial replication. Pellets of virulent L. pneumophila may contribute to the transmission of Legionnaires' disease, an issue currently under investigation.  相似文献   

19.
Coxiella burnetii, the causative agent of human Q fever, is an intracellular pathogen that replicates in an acidified vacuole derived from the host lysosomal network. This pathogen encodes a Dot/Icm type IV secretion system that delivers bacterial proteins called effectors to the host cytosol. To identify new effector proteins, the functionally analogous Legionella pneumophila Dot/Icm system was used in a genetic screen to identify fragments of C. burnetii genomic DNA that when fused to an adenylate cyclase reporter were capable of directing Dot/Icm-dependent translocation of the fusion protein into mammalian host cells. This screen identified Dot/Icm effectors that were proteins unique to C. burnetii, having no overall sequence homology with L. pneumophila Dot/Icm effectors. A comparison of C. burnetii genome sequences from different isolates revealed diversity in the size and distribution of the genes encoding many of these effectors. Studies examining the localization and function of effectors in eukaryotic cells provided evidence that several of these proteins have an affinity for specific host organelles and can disrupt cellular functions. The identification of a transposon insertion mutation that disrupts the dot/icm locus was used to validate that this apparatus was essential for translocation of effectors. Importantly, this C. burnetii Dot/Icm-deficient mutant was found to be defective for intracellular replication. Thus, these data indicate that C. burnetii encodes a unique subset of bacterial effector proteins translocated into host cells by the Dot/Icm apparatus, and that the cumulative activities exerted by these effectors enables C. burnetii to successfully establish a niche inside mammalian cells that supports intracellular replication.  相似文献   

20.
Legionella pneumophila, the causative agent of Legionnaires' disease, is a ubiquitous freshwater bacterium whose virulence phenotypes require a type IV secretion system (T4SS). L. pneumophila strain JR32 contains two virulence-associated T4SSs, the Dot/Icm and Lvh T4SSs. Defective entry and phagosome acidification phenotypes of dot/icm mutants are conditional and reversed by incubating broth-grown stationary-phase cultures in water (WS treatment) prior to infection, as a mimic of the aquatic environment of Legionella. Reversal of dot/icm virulence defects requires the Lvh T4SS and is associated with a >10-fold induction of LpnE, a tetratricopeptide repeat (TPR)-containing protein. In the current study, we demonstrated that defective entry and phagosome acidification phenotypes of mutants with changes in LpnE and EnhC, another TPR-containing protein, were similarly reversed by WS treatment. In contrast to dot/icm mutants for which the Lvh T4SS was required, reversal for the ΔlpnE or the ΔenhC mutant required that the other TPR-containing protein be present. The single and double ΔlpnE and ΔenhC mutants showed a hypersensitivity to sodium ion, a phenotype associated with dysfunction of the Dot/Icm T4SS. The ΔlpnE single and the ΔlpnE ΔenhC double mutant showed 3- to 9-fold increases in translocation of Dot/Icm T4SS substrates, LegS2/SplY and LepB. Taken together, these data identify TPR-containing proteins in a second mechanism by which the WS mimic of a Legionella environmental niche can reverse virulence defects of broth-grown cultures and implicate LpnE and EnhC directly or indirectly in translocation of Dot/Icm T4SS protein substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号