首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been shown that adult pancreatic ductal cells can dedifferentiate and act as pancreatic progenitors. Dedifferentiation of epithelial cells is often associated with the epithelial–mesenchymal transition (EMT). In this study, we investigated the occurrence of EMT in adult human exocrine pancreatic cells both in vitro and in vivo. Cells of exocrine fraction isolated from the pancreas of brain-dead donors were first cultured in suspension for eight days. This led to the formation of spheroids, composed of a principal population of cells with duct-like phenotype. When cultivated in tissue culture-treated flasks, spheroid cells exhibited a proliferative capacity and coexpressed epithelial (cytokeratin7 and cytokeratin19) and mesenchymal (vimentin and α-smooth muscle actin) markers as well as marker of progenitor pancreatic cells (pancreatic duodenal homeobox factor-1) and surface markers of mesenchymal stem cells. The switch from E-cadherin to N-cadherin associated with Snail1 expression suggested that these cells underwent EMT. In addition, we showed coexpression of epithelial and mesenchymal markers in ductal cells of one normal adult pancreas and three type 2 diabetic pancreases. Some of the vimentin-positive cells were found to coexpress glucagon or amylase. These results point to the occurrence of EMT, which may take place on dedifferentiation of ductal cells during the regeneration or renewal of human pancreatic tissues. (J Histochem Cytochem 58:807–823, 2010)  相似文献   

2.
Tissues of the adult organism maintain the homeostasis and respond to injury by means of progenitor/stem cell compartments capable to give rise to appropriate progeny. In organs composed by histotypes of different embryological origins (e.g. the liver), the tissue turnover may in theory involve different stem/precursor cells able to respond coordinately to physiological or pathological stimuli. In the liver, a progenitor cell compartment, giving rise to hepatocytes and cholangiocytes, can be activated by chronic injury inhibiting hepatocyte proliferation. The precursor compartment guaranteeing turnover of hepatic stellate cells (HSCs) (perisinusoidal cells implicated with the origin of the liver fibrosis) in adult organ is yet unveiled. We show here that epithelial and mesenchymal liver cells (hepatocytes and HSCs) may arise from a common progenitor. Sca+ murine progenitor cells were found to coexpress markers of epithelial and mesenchymal lineages and to give rise, within few generations, to cells that segregate the lineage-specific markers into two distinct subpopulations. Notably, these progenitor cells, clonally derived, when transplanted in healthy livers, were found to generate epithelial and mesenchymal liver-specific derivatives (i.e. hepatocytes and HSCs) properly integrated in the liver architecture. These evidences suggest the existence of a ‘bona fide'' organ-specific meso-endodermal precursor cell, thus profoundly modifying current models of adult progenitor commitment believed, so far, to be lineage-restricted. Heterotopic transplantations, which confirm the dual differentiation potentiality of those cells, indicates as tissue local cues are necessary to drive a full hepatic differentiation. These data provide first evidences for an adult stem/precursor cell capable to differentiate in both parenchymal and non-parenchymal organ-specific components and candidate the liver as the instructive site for the reservoir compartment of HSC precursors as yet non-localized in the adult.  相似文献   

3.
The epithelial–mesenchymal transition (EMT) is an important event in the developmental process of various organs. In periodontal development during root formation of a tooth, this EMT has been a subject of controversy. Hertwig’s epithelial root sheath (HERS), consisting of two epithelial layers, plays a role of inducing odontogenesis during root development and thereafter becomes fragmented. Some researchers have maintained that in the process of this fragmentation, some HERS cells change from epithelial to mesenchymal cells. Here, we established a HERS cell line (HERS01a) and examined its gene and protein expression. Immunohistochemical staining and real-time PCR analysis showed that HERS01a cells expressed vimentin and N-cadherin as mesenchymal markers as well as cytokeratin14, E-cadherin, and p63 as epithelial stem cell markers. In the presence of TGF-β, HERS01a cells also expressed many more mesenchymal markers, as well as snail1 and 2 as EMT markers. Taken together, our data show that HERS01a displayed unique features associated with EMT in the root formation process, and will thus be useful for analyzing the biological characteristics of HERS and the molecular mechanism underlying the EMT.  相似文献   

4.
Characterization of cells in the developing human liver   总被引:12,自引:0,他引:12  
Human hepatic progenitor cells (HPCs) have been shown to co-express the hematopoietic stem cell (HSC) markers, CD117 and CD34. These cells differentiate not only into hepatocytes and cholangiocytes but also into pancreatic ductal and acinar cells under certain conditions. The fetal liver (FL) is rich in precursor/stem cells; however, little is known about (i) the markers expressed by liver cells during fetal development and (ii) whether an equivalent to the adult liver stem-like progenitors exists in the FL. Here, (i) FL tissue obtained from human 5-18-week-old fetuses were evaluated by means of flow cytometry, immunocyto-, and histochemistry for the emergence of cells expressing and co-expressing known hematopoietic, hepatic, and pancreatic cell markers, and (ii) isolated putative HPCs were phenotypically and molecularly characterized. We report that (i) red blood and endothelial cell precursors were most abundant in early gestation. Cells expressing HSC and pancreatic markers were found in the first trimester, while cells expressing hepatic markers appeared in the second trimester. Very few committed cells were present in FLs obtained early in the first trimester. In addition, cells expressing pancreatic markers co-expressed the HSC marker CD117. (ii) Isolated CD117+/CD34+/CD90- cells in vitro expressed both the genes and proteins for the hepatic markers such as albumin, alpha feto protein (AFP), alpha1-antitrypsin, and cytokeratin 19 (CK19). Our study suggests that hepatoblast and ductal plate/bile duct development mainly occurs during the second trimester. FLs in gestation weeks 5-9 had the highest numbers of precursor cells and the least committed cells. Cells that differentiate into Alb+ or CK19+ can be isolated from early FLs and may be appropriate progenitors for establishing novel systems to investigate basic mechanisms for cell therapy.  相似文献   

5.
Mesenchymal stem cells (MSCs) have great clinical potential for the replacement and regeneration of diseased or damaged tissue. They are especially important in the production of the hematopoietic microenvironment, which regulates the maintenance and differentiation of hematopoietic stem cells (HSCs). In the adult, MSCs and their differentiating progeny are found predominantly in the bone marrow (BM). However, it is as yet unknown in which embryonic tissues MSCs reside and whether there is a localized association of these cells within hematopoietic sites during development. To investigate the embryonic origins of these cells, we performed anatomical mapping and frequency analysis of mesenchymal progenitors at several stages of mouse ontogeny. We report here the presence of mesenchymal progenitors, with the potential to differentiate into cells of the osteogenic, adipogenic and chondrogenic lineages, in most of the sites harboring hematopoietic cells. They first appear in the aorta-gonad-mesonephros (AGM) region at the time of HSC emergence. However, at this developmental stage, their presence is independent of HSC activity. They increase numerically during development to a plateau level found in adult BM. Additionally, mesenchymal progenitors are found in the embryonic circulation. Taken together, these data show a co-localization of mesenchymal progenitor/stem cells to the major hematopoietic territories, suggesting that, as development proceeds, mesenchymal progenitors expand within these potent hematopoietic sites.  相似文献   

6.
7.
During cancer progression, malignant cells undergo epithelial-mesenchymal transitions (EMT) and mesenchymal-epithelial transitions (MET) as part of a broad invasion and metastasis program. We previously observed MET events among lung metastases in a preclinical model of prostate adenocarcinoma that suggested a relationship between epithelial plasticity and metastatic spread. We thus sought to translate these findings into clinical evidence by examining the existence of EMT in circulating tumor cells (CTC) from patients with progressive metastatic solid tumors, with a focus on men with castration-resistant prostate cancer (CRPC) and women with metastatic breast cancer. We showed that the majority (> 80%) of these CTCs in patients with metastatic CRPC coexpress epithelial proteins such as epithelial cell adhesion molecule (EpCAM), cytokeratins (CK), and E-cadherin, with mesenchymal proteins including vimentin, N-cadherin and O-cadherin, and the stem cell marker CD133. Equally, we found that more than 75% of CTCs from women with metastatic breast cancer coexpress CK, vimentin, and N-cadherin. The existence and high frequency of these CTCs coexpressing epithelial, mesenchymal, and stem cell markers in patients with progressive metastases has important implications for the application and interpretation of approved methods to detect CTCs.  相似文献   

8.
In the process of cancer EMT, some subgroups of cancer cells simultaneously exhibit both mesenchymal and epithelial characteristics, a phenomenon termed partial EMT (pEMT). pEMT is a plastic state in which cells coexpress epithelial and mesenchymal markers. In squamous cell carcinoma (SCC), pEMT is regulated, and the phenotype is maintained via the HIPPO pathway, NOTCH pathway and TGF-β pathways and by microRNAs, lncRNAs and the cancer microenvironment (CME); thus, SCC exhibits aggressive tumorigenic properties and high stemness, which leads collective migration and therapy resistance. Few studies have reported therapeutic interventions to address cells that have undergone pEMT, and this approach may be an effective way to inhibit the plasticity, drug resistance and metastatic potential of SCC.  相似文献   

9.
10.
Although the various biological roles of thymosin β4 (Tβ4) have been studied widely, the effect of Tβ4 and Tβ4-expressing cells in the liver remains unclear. Therefore, we investigated the expression and function of Tβ4 in chronically damaged livers. CCl4 was injected into male mice to induce a model of chronic liver disease. Mice were sacrificed at 6 and 10 weeks after CCl4 treatment, and the livers were collected for biochemical analysis. The activated LX-2, human hepatic stellate cell (HSC) line, were transfected with Tβ4-specific siRNA and activation markers of HSCs were examined. Compared to HepG2, higher expression of Tβ4 in RNA and protein levels was detected in the activated LX-2. In addition, Tβ4 was up-regulated in human liver with advanced liver fibrosis. The expression of Tβ4 increased during mouse HSC activation. Tβ4 was also up-regulated and Tβ4-positive cells were co-localized with α-smooth muscle actin (α-SMA) in the livers of CCl4-treated mice, whereas such cells were rarely detected in the livers of corn-oil treated mice. The suppression of Tβ4 in LX-2 cells by siRNA induced the down-regulation of HSC activation-related genes, tgf-β, α-sma, collagen, and vimentin, and up-regulation of HSC inactivation markers, ppar-γ and gfap. Immunofluorescent staining detected rare co-expressing cells with Tβ4 and α-SMA in Tβ4 siRNA-transfected cells. In addition, cytoplasmic lipid droplets were observed in Tβ4 siRNA-treated cells. These results demonstrate that activated HSCs expressed Tβ4 in chronically damaged livers, and this endogenous expression of Tβ4 influenced HSC activation, indicating that Tβ4 might contribute to liver fibrosis by regulating HSC activation.  相似文献   

11.
The embryonal origin of hepatic stellate cells (HSCs), the principal cells in hepatic fibrogenesis, is still intriguing. To explore the origin and the differentiation of HSCs, we studied the expression of cytokeratin 18 (CK18) and 19 (CK19), the standard markers of simple epithelial cells, in cultured human HSCs. Hepatic stellate cells were isolated from five normal human livers. In immunofluorescence staining, both clone C-51 anti-CK18 antibody and clone RCK108 anti-CK19 antibody labeled almost all stellate cells in the primary culture. Double immunofluorescence staining for cytokeratin/vimentin and cytokeratin/alpha-smooth muscle actin detected by confocal laser scanning microscopy clearly demonstrated the localization of cytokeratin immunoreactivity in human HSCs. During subsequent cultivation of human HSCs to the tenth passage, immunocytochemical staining and western blot analysis demonstrated gradually decreasing profiles of CK18 and CK19 expression. The progressive reduction of cytokeratin expression was further confirmed in a culture of clone cells originated from a single HSC. In conclusion, both CK18 and CK19 are expressed in cultured human HSCs, and the extent of their expression decreases gradually during prolonged cultivation. Our results suggest that HSCs may be of epithelial origin, and that they undergo the transdifferentiation from epithelial to mesenchymal phenotype during an activation process in vitro.  相似文献   

12.
13.
Li B  Zheng YW  Sano Y  Taniguchi H 《PloS one》2011,6(2):e17092
Mesenchymal-epithelial transition events are related to embryonic development, tissue construction, and wound healing. Stem cells are involved in all of these processes, at least in part. However, the direct evidence of mesenchymal-epithelial transition associated with stem cells is unclear. To determine whether mesenchymal-epithelial transition occurs in liver development and/or the differentiation process of hepatic stem cells in vitro, we analyzed a variety of murine liver tissues from embryonic day 11.5 to adults and the colonies derived from hepatic stem/progenitor cells isolated with flow cytometry. The results of gene expression, immunohistochemistry and Western blot showed that as liver develops, the expression of epithelial markers such as Cytokeratin18 and E-cadherin increase, while expression of mesenchymal markers such as vimentin and N-cadherin decreased. On the other hand, in freshly isolated hepatic stem cells, the majority of cells (65.0%) co-express epithelial and mesenchymal markers; this proportion is significantly higher than observed in hematopoietic cells, non-hematopoietic cells and non-stem cell fractions. Likewise, in stem cell-derived colonies cultured over time, upregulation of epithelial genes (Cytokeratin-18 and E-cadherin) occurred simultaneously with downregulation of mesenchymal genes (vimentin and Snail1). Furthermore, in the fetal liver, vimentin-positive cells in the non-hematopoietic fraction had distinct proliferative activity and expressed early the hepatic lineage marker alpha-fetoprotein. CONCLUSION: Hepatic stem cells co-express mesenchymal and epithelial markers; the mesenchymal-epithelial transition occurred in both liver development and differentiation of hepatic stem/progenitor cells in vitro. Besides as a mesenchymal marker, vimentin is a novel indicator for cell proliferative activity and undifferentiated status in liver cells.  相似文献   

14.
There is increasing evidence that human mesenchymal stem cells (hMSCs) can be a valuable, transplantable source of hepatocytes. Most of the hMSCs preparations used in these studies were likely heterogeneous cell populations, isolated by adherence to plastic surfaces or by density gradient centrifugation. Therefore, the participation of other unknown trace cell populations cannot be rigorously discounted. Here we report the isolation and establishment of a cloned human MSC line (chMSC) from human bone marrow primary culture, through which we confirmed the hepatic differentiation capability of authentic hMSCs. chMSCs expressed markers of mesenchymal cells, but not markers of hematopoietic stem cells. In vitro, chMSCs can differentiate into either mesenchymal cells or cells exhibiting hepatocyte‐like phenotypes. When transplanted intrasplentically into carbon tetrachloride‐injured livers of SCID mice, EGFP‐tagged chMSCs engrafted into the host liver parenchyma, exhibited typical hepatocyte morphology, form a three‐dimensional architecture, and differentiate into hepatocyte‐like cells expressing human albumin and α‐1‐anti‐trypsin. By confocal microscopy, ultrafine intercellular nanotubular structures were visible between adjacent transplanted and host hepatocytes. We postulate that these structures may assist in the phenotype conversion of chMSCs, possibly by exchange of cytoplasmic components between native hepatocytes and transplanted cells. Thus, a clonal pure population of hMSCs, which can be expanded in culture, may have potential as a cellular source for substitution damaged cells in hepatic injury. J. Cell. Biochem. 108: 693–704, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Long non-coding RNAs (lncRNAs) play an important role in various physiological and pathological processes. However, the biological role of lncRNA Meg8 in liver fibrosis is largely unknown. In this study, we found that Meg8 was over-expressed in activated hepatic stellate cells (HSCs), injured hepatocytes (HCs) and fibrotic livers. Furthermore, we revealed that Meg8 suppressed the expression of the pro-fibrogenic and proliferation genes in activated HSCs. In addition, silencing Meg8 significantly inhibited the expression of the epithelial markers, while noticeably promoted the expression of the mesenchymal markers in primary HCs and AML12 cells. Mechanistically, we demonstrated that Meg8 suppressed HSCs activation and epithelial-mesenchymal transition (EMT) of HCs through inhibiting the Notch pathway. In conclusion, our findings indicate that Meg8 may serve as a novel protective molecule and a potential therapeutic target of liver fibrosis.  相似文献   

16.
17.
In COPD, matrix remodeling contributes to airflow limitation. Recent evidence suggests that next to fibroblasts, the process of epithelial-mesenchymal transition can contribute to matrix remodeling. CSE has been shown to induce EMT in lung epithelial cells, but the signaling mechanisms involved are largely unknown and subject of this study. EMT was assessed in A549 and BEAS2B cells stimulated with CSE by qPCR, Western blotting and immunofluorescence for epithelial and mesenchymal markers, as were collagen production, cell adhesion and barrier integrity as functional endpoints. Involvement of TGF-β and HIF1α signaling pathways were investigated. In addition, mouse models were used to examine the effects of CS on hypoxia signaling and of hypoxia per se on mesenchymal expression. CSE induced EMT characteristics in A549 and BEAS2B cells, evidenced by decreased expression of epithelial markers and a concomitant increase in mesenchymal marker expression after CSE exposure. Furthermore cells that underwent EMT showed increased production of collagen, decreased adhesion and disrupted barrier integrity. The induction of EMT was found to be independent of TGF-β signaling. On the contrary, CS was able to induce hypoxic signaling in A549 and BEAS2B cells as well as in mice lung tissue. Importantly, HIF1α knock-down prevented induction of mesenchymal markers, increased collagen production and decreased adhesion after CSE exposure, data that are in line with the observed induction of mesenchymal marker expression by hypoxia in vitro and in vivo. Together these data provide evidence that both bronchial and alveolar epithelial cells undergo a functional phenotypic shift in response to CSE exposure which can contribute to increased collagen deposition in COPD lungs. Moreover, HIF1α signaling appears to play an important role in this process.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号