首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy, a major bulk proteolytic pathway, contributes to intracellular protein turnover, together with protein synthesis. Both are subject to dynamic control by amino acids and insulin. The mechanisms of signaling and cross-talk of their physiological anabolic effects remain elusive. Recent studies established that amino acids and insulin induce p70 S6 kinase (p70(S6k)) phosphorylation by mTOR, involved in translational control of protein synthesis. Here, the signaling mechanisms of amino acids and insulin in macroautophagy in relation to mTOR were investigated. In isolated rat hepatocytes, both regulatory amino acids (RegAA) and insulin coordinately activated p70(S6k) phosphorylation, which was completely blocked by rapamycin, an mTOR inhibitor. However, rapamycin blocked proteolytic suppression by insulin, but did not block inhibition by RegAA. These contrasting results suggest that insulin controls autophagy through the mTOR pathway, but amino acids do not. Furthermore, micropermeabilization with Saccharomyces aureus alpha-toxin completely deprived hepatocytes of proteolytic responsiveness to RegAA and insulin, but still maintained p70(S6k) phosphorylation by RegAA. In contrast, Leu(8)-MAP, a non-transportable leucine analogue, did not mimic the effect of leucine on p70(S6k) phosphorylation, but maintained the activity on proteolysis. Finally, BCH, a System L-specific amino acid, did not affect proteolytic suppression or mTOR activation by leucine. All the results indicate that mTOR is not common to the signaling mechanisms of amino acids and insulin in autophagy, and that the amino acid signaling starts extracellularly with their "receptor(s)," probably other than transporters, and is mediated through a novel route distinct from the mTOR pathway employed by insulin.  相似文献   

2.
The mammalian target of rapamycin (mTOR) controls multiple cellular functions in response to amino acids and growth factors, in part by regulating the phosphorylation of p70 S6 kinase (p70S6k) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Raptor (regulatory associated protein of mTOR) is a recently identified mTOR binding partner that also binds p70S6k and 4E-BP1 and is essential for TOR signaling in vivo. Herein we demonstrate that raptor binds to p70S6k and 4E-BP1 through their respective TOS (conserved TOR signaling) motifs to be required for amino acid- and mTOR-dependent regulation of these mTOR substrates in vivo. A point mutation of the TOS motif also eliminates all in vitro mTOR-catalyzed 4E-BP1 phosphorylation and abolishes the raptor-dependent component of mTOR-catalyzed p70S6k phosphorylation in vitro. Raptor appears to serve as an mTOR scaffold protein, the binding of which to the TOS motif of mTOR substrates is necessary for effective mTOR-catalyzed phosphorylation in vivo and perhaps for conferring their sensitivity to rapamycin and amino acid sufficiency.  相似文献   

3.
Enhanced phosphorylation of the ribosomal protein s6 kinase, p70(s6k), and the translational repressor, 4E-BP1, are associated with either insulin-induced or amino acid-induced protein synthesis. Hyperphosphorylation of p70(s6k) and 4E-BP1 in response to insulin or amino acids is mediated through the mammalian target of rapamycin (mTOR). In several cell lines, mTOR or its downstream targets can be regulated by phosphatidylinositol (PI) 3-kinase; protein kinases A, B, and C; heterotrimeric G-proteins; a PD98059-sensitive kinase or calcium; as well as by amino acids. Regulation by amino acids appears to involve detection of levels of charged t-RNA or t-RNA synthetase activity and is sensitive to inhibition by amino acid alcohols. In the present article, however, we show that the rapamycin-sensitive regulation of 4E-BP1 and p70(s6k) in freshly isolated rat adipocytes is not inhibited by either L-leucinol or L-histidinol. This finding is in agreement with other recent studies from our laboratory suggesting that the mechanism by which amino acids regulate mTOR in freshly isolated adipocytes may be different than the mechanism found in a number of cell lines. Therefore we investigated the possible role of growth factor-regulated and G-protein-regulated signaling pathways in the rapamycin-sensitive, amino acid alcohol-insensitive actions of amino acids on 4E-BP1 phosphorylation. We found, in contrast to previously published results using 3T3-L1 adipocytes or other cell lines, that the increase in 4E-BP1 phosphorylation promoted by amino acids was insensitive to agents that regulate protein kinase A, mobilize calcium, or inhibit protein kinase C. Furthermore, amino acid-induced 4E-BP1 phosphorylation was not blocked by pertussis toxin nor was it mimicked by the G-protein agonists fluoroaluminate or MAS-7. However, amino acids failed to activate either PI 3-kinase, protein kinase B, or mitogen-activated protein kinase and failed to promote tyrosine phosphorylation of cellular proteins, similar to observations made using cell lines. In summary, amino acids appear to use an amino acid alcohol-insensitive mechanism to regulate mTOR in freshly isolated adipocytes. This mechanism is independent of cell-signaling pathways implicated in the regulation of mTOR or its downstream targets in other cells. Overall, our study emphasizes the need for caution when extending results obtained using established cell lines to the differentiated nondividing cells found in most tissues.  相似文献   

4.
Glutamine,arginine, and leucine signaling in the intestine   总被引:2,自引:0,他引:2  
Glutamine and leucine are abundant constituents of plant and animal proteins, whereas the content of arginine in foods and physiological fluids varies greatly. Besides their role in protein synthesis, these three amino acids individually activate signaling pathway to promote protein synthesis and possibly inhibit autophagy-mediated protein degradation in intestinal epithelial cells. In addition, glutamine and arginine stimulate the mitogen-activated protein kinase and mammalian target of rapamycin (mTOR)/p70 (s6) kinase pathways, respectively, to enhance mucosal cell migration and restitution. Moreover, through the nitric oxide-dependent cGMP signaling cascade, arginine regulates multiple physiological events in the intestine that are beneficial for cell homeostasis and survival. Available evidence from both in vitro and in vivo animal studies shows that glutamine and arginine promote cell proliferation and exert differential cytoprotective effects in response to nutrient deprivation, oxidative injury, stress, and immunological challenge. Additionally, when nitric oxide is available, leucine increases the migration of intestinal cells. Therefore, through cellular signaling mechanisms, arginine, glutamine, and leucine play crucial roles in intestinal growth, integrity, and function.  相似文献   

5.
6.
p70 S6 kinase alpha (p70alpha) is activated in vivo through a multisite phosphorylation in response to mitogens if a sufficient supply of amino acids is available or to high concentrations of amino acids per se. The immunosuppressant drug rapamycin inhibits p70alpha activation in a manner that can be overcome by coexpression of p70alpha with a rapamycin-resistant mutant of the mammalian target of rapamycin (mTOR) but only if the mTOR kinase domain is intact. We report here that a mammalian recombinant p70alpha polypeptide, extracted in an inactive form from rapamycin-treated cells, can be directly phosphorylated by the mTOR kinase in vitro predominantly at the rapamycin-sensitive site Thr-412. mTOR-catalyzed p70alpha phosphorylation in vitro is accompanied by a substantial restoration in p70alpha kinase activity toward its physiologic substrate, the 40 S ribosomal protein S6. Moreover, sequential phosphorylation of p70alpha by mTOR and 3-phosphoinositide-dependent protein kinase 1 in vitro resulted in a synergistic stimulation of p70alpha activity to levels similar to that attained by serum stimulation in vivo. These results indicate that mTOR is likely to function as a direct activator of p70 in vivo, although the relative contribution of mTOR-catalyzed p70 phosphorylation in each of the many circumstances that engender p70 activation remains to be defined.  相似文献   

7.
Insulin acutely activates protein synthesis in ventricular cardiomyocytes from adult rats. In this study, we have established the methodology for studying the regulation of the signaling pathways and translation factors that may be involved in this response and have examined the effects of acute insulin treatment on them. Insulin rapidly activated the 70-kDa ribosomal S6 kinase (p70 S6k), and this effect was inhibited both by rapamycin and by inhibitors of phosphatidylinositol 3-kinase. The activation of p70 S6k is mediated by a signaling pathway involving the mammalian target of rapamycin (mTOR), which also modulates other translation factors. These include the eukaryotic initiation factor (eIF) 4E binding proteins (4E-BPs) and eukaryotic elongation factor 2 (eEF2). Insulin caused phosphorylation of 4E-BP1 and induced its dissociation from eIF4E, and these effects were also blocked by rapamycin. Concomitant with this, insulin increased the binding of eIF4E to eIF4G. Insulin also activated protein kinase B (PKB), which may lie upstream of p70 S6k and 4E-BP1, with the activation of the different isoforms being in the order alpha>beta>gamma. Insulin also caused inhibition of glycogen synthase kinase 3, which lies downstream of PKB, and of eEF2 kinase. The phosphorylation of eEF2 itself was also decreased by insulin, and this effect and the inactivation of eEF2 kinase were attenuated by rapamycin. The activation of overall protein synthesis by insulin in cardiomyocytes was substantially inhibited by rapamycin (but not by inhibitors of other specific signaling pathways, e.g., mitogen-activated protein kinase), showing that signaling events linked to mTOR play a major role in the control of translation by insulin in this cell type.  相似文献   

8.
Recent studies indicate that zinc activates p70 S6 kinase (p70(S6k)) by a mechanism involving phosphatidylinositol 3-kinase (PI 3-kinase) and Akt (protein kinase B). Here it is shown that phenanthroline, a zinc and heavy metal chelator, inhibited both amino acid- and insulin-stimulated phosphorylation of p70(S6k). Both amino acid and insulin activations of p70(S6k) involve a rapamycin-sensitive step that involves the mammalian target of rapamycin (mTOR, also known as FRAP and RAFT). However, in contrast to insulin, amino acids activate p70(S6k) by an unknown PI 3-kinase- and Akt-independent mechanism. Thus the effects of chelator on amino acid activation of p70(S6k) were surprising. For this reason, we tested the hypothesis that zinc directly regulates mTOR activity, independently of PI 3-kinase activation. In support of this, basal and amino acid stimulation of p70(S6k) phosphorylation was increased by zinc addition to the incubation media. Furthermore, the protein kinase activities of mTOR immunoprecipitated from rat brain lysates were stimulated two- to fivefold by 10-300 microM Zn2+ in the presence of an excess of either Mn2+ or Mg2+, whereas incubation with 1,10-phenanthroline had no effect. These findings indicate that Zn2+ regulates, but is not absolutely required for, mTOR protein kinase activity. Zinc also stimulated a recombinant human form of mTOR. The stimulatory effects of Zn2+ were maximal at approximately 100 microM but decreased and became inhibitory at higher physiologically irrelevant concentrations. Micromolar concentrations of other divalent cations, Ca2+, Fe2+, and Mn2+, had no effect on the protein kinase activity of mTOR in the presence of excess Mg2+. Our results and the results of others suggest that zinc acts at multiple steps in amino acid- and insulin cell-signaling pathways, including mTOR, and that the additive effects of Zn2+ on these steps may thereby promote insulin and nutritional signaling.  相似文献   

9.
The mammalian target of rapamycin (mTOR) signaling exists in two complexes: mTORC1 and mTORC2. Neurotensin (NT), an intestinal hormone secreted by enteroendocrine (N) cells in the small bowel, has important physiological effects in the gastrointestinal tract. The human endocrine cell line BON abundantly expresses the NT gene and synthesizes and secretes NT in a manner analogous to that of N cells. Here, we demonstrate that the inhibition of mTORC1 by rapamycin (mTORC1 inhibitor), torin1 (both mTORC1 and mTORC2 inhibitor) or short hairpin RNA-mediated knockdown of mTOR, regulatory associated protein of mTOR (RAPTOR), and p70 S6 kinase (p70S6K) increased basal NT release via upregulating NT gene expression in BON cells. c-Jun activity was increased by rapamycin or torin1 or p70S6K knockdown. c-Jun overexpression dramatically increased NT promoter activity, which was blocked by PD98059, an mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, overexpression of MEK1 or extracellular signal-regulated kinase 1 (ERK1) increased c-Jun expression and NT promoter activity. More importantly, PD98059 blocked rapamycin- or torin1-enhanced NT secretion. Consistently, rapamycin and torin1 also increased NT gene expression in Hep3B cells, a human hepatoma cell line that, similar to BON, expresses high levels of NT. Phosphorylation of c-Jun and ERK1/2 was also increased by rapamycin and torin1 in Hep3B cells. Finally, we showed activation of mTOR in BON cells treated with amino acids, high glucose, or serum and, concurrently, the attenuation of ERK1/2 and c-Jun phosphorylation and NT secretion. Together, mTORC1, as a nutrient sensor, negatively regulates NT secretion via the MEK/ERK/c-Jun signaling pathway. Our results identify a physiological link between mTORC1 and MEK/ERK signaling in controlling intestinal hormone gene expression and secretion.  相似文献   

10.
We have examined the role of endogenous 70-kDa S6 kinase (p70(S6K)) in actin cytoskeletal organization and cell migration in Swiss 3T3 fibroblasts. Association of p70(S6K) with the actin cytoskeleton was demonstrated by cosedimentation of p70(S6K) with F-actin and by subcellular fractionation in which p70(S6K) activity was measured in the F-actin cytoskeletal fraction. Immunocytochemical studies showed that p70(S6K), Akt1, PDK1, and p85 phosphoinositide 3-kinase (PI 3-kinase) were localized to the actin arc, a caveolin-enriched cytoskeletal structure located at the leading edge of migrating cells. Using a phospho-specific antibody to mammalian target of rapamycin (mTOR), we find that activated mTOR is enriched at the actin arc, suggesting that activation of the p70(S6K) signaling pathway is important to cell migration. Using the actin arc to assess migration, epidermal growth factor (EGF) stimulation was found to induce actin arc formation, an effect that was blocked by rapamycin treatment. We show further that actin stress fibers may function to down-regulate p70(S6K). Fibronectin stimulated stress fiber formation in the absence of growth factors and caused an inactivation of p70(S6K). Conversely, cytochalasin D and the Rho kinase inhibitor Y-27632, both of which cause stress fiber disruption, increased p70(S6K) activity. These studies provide evidence that the p70(S6K) pathway is important for signaling at two F-actin microdomains in cells and regulates cell migration.  相似文献   

11.
We have examined the role of endogenous 70-kDa S6 kinase (p70(S6K)) in actin cytoskeletal organization and cell migration in Swiss 3T3 fibroblasts. Association of p70(S6K) with the actin cytoskeleton was demonstrated by cosedimentation of p70(S6K) with F-actin and by subcellular fractionation in which p70(S6K) activity was measured in the F-actin cytoskeletal fraction. Immunocytochemical studies showed that p70(S6K), Akt1, PDK1, and p85 phosphoinositide 3-kinase (PI 3-kinase) were localized to the actin arc, a caveolin-enriched cytoskeletal structure located at the leading edge of migrating cells. Using a phospho-specific antibody to mammalian target of rapamycin (mTOR), we find that activated mTOR is enriched at the actin arc, suggesting that activation of the p70(S6K) signaling pathway is important to cell migration. Using the actin arc to assess migration, epidermal growth factor (EGF) stimulation was found to induce actin arc formation, an effect that was blocked by rapamycin treatment. We show further that actin stress fibers may function to down-regulate p70(S6K). Fibronectin stimulated stress fiber formation in the absence of growth factors and caused an inactivation of p70(S6K). Conversely, cytochalasin D and the Rho kinase inhibitor Y-27632, both of which cause stress fiber disruption, increased p70(S6K) activity. These studies provide evidence that the p70(S6K) pathway is important for signaling at two F-actin microdomains in cells and regulates cell migration.  相似文献   

12.
Amino acids, especially branched-chain amino acids such as l-leucine, have been shown to regulate activation of p70 S6 kinase and phosphorylation of 4E-BP1 through the mTOR signaling pathway. In our recent study, l-arginine was also shown to activate the mTOR signaling pathway in rat intestinal epithelial cells. l-Glutamine is an amino acid that is required for culturing of numerous cell types, including rat intestinal epithelial cells. In this study, we showed that l-glutamine inhibited the activation of p70 S6 kinase and phosphorylation of 4E-BP1 induced by arginine or leucine in rat intestinal epithelial cells. Although the molecular mechanism of l-glutamine-induced inhibition of the mTOR signaling pathway is still unknown, the presence of this novel signal pathway may indicate that individual amino acids play specific roles for cellular proliferation and growth.  相似文献   

13.
Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that regulates cell growth, proliferation, and survival. mTOR is frequently activated in human cancers and is a commonly sought anticancer therapeutic target. However, whether the human mTOR gene itself is a proto-oncogene possessing tumorigenicity has not been firmly established. To answer this question, we mutated evolutionarily conserved amino acids, generated eight mutants in the HEAT repeats (M938T) and the FAT (W1456R and G1479N) and kinase (P2273S, V2284M, V2291I, T2294I, and E2288K) domains of mTOR, and studied their oncogenicity. On transient expression in HEK293T cells, these mTOR mutants displayed elevated protein kinase activities accompanied by activated mTOR/p70S6K signaling at varying levels, demonstrating the gain of function of the mTOR gene with these mutations. We selected P2273S and E2288K, the two most catalytically active mutants, to further examine their oncogenicity and tumorigenicity. Stable expression of the two mTOR mutants in NIH3T3 cells strongly activated mTOR/p70S6K signaling, induced cell transformation and invasion, and remarkably, caused rapid tumor formation and growth in athymic nude mice after subcutaneous inoculation of the transfected cells. This study confirms the oncogenic potential of mTOR suggested previously and demonstrates for the first time its tumorigenicity. Thus, beyond the pivotal position of mTOR to relay the oncogenic signals from the upstream phosphatidylinositol 3-kinase/Akt pathway in human cancer, mTOR is capable potentially of playing a direct role in human tumorigenesis if mutated. These results also further support the conclusion that mTOR is a major therapeutic target in human cancers.  相似文献   

14.
Thymidine phosphorylase (TPase) is also known as the platelet-derived endothelial cell growth factor (PD-ECGF) and plays a role in angiogenesis. Deoxyribose (dR; a downstream TPase-product) addition to endothelial cells may stimulate FAK and p70/S6k signaling, which can be inhibited by rapamycin. Rapamycin is a specific mammalian target of the rapamycin (mTOR) inhibitor, a kinase that lies directly upstream of p70/S6k. This suggests a role for TPase in the mTOR/p70/S6k pathway. In order to study this in more detail, we exposed cells with and without TPase expression to dR and rapamycin and determined the effect on cell growth. We observed protection in cytotoxicity in Colo320 cells, but not Colo320 TP1 cells. This was in part mediated by activation of p70/S6k and inhibition of autophagy. Further studies are recommended to elucidate the mechanism behind the protective effect of dR.  相似文献   

15.
The mammalian target of rapamycin (mTOR) controls cell growth in response to amino acids and growth factors, in part by regulating p70 S6 kinase alpha (p70 alpha) and eukaryotic initiation factor 4E binding protein 1 (4EBP1). Raptor (regulatory associated protein of mTOR) is a 150 kDa mTOR binding protein that is essential for TOR signaling in vivo and also binds 4EBP1 and p70alpha through their respective TOS (TOR signaling) motifs, a short conserved segment previously shown to be required for amino acid- and mTOR-dependent regulation of these substrates in vivo. Raptor appears to serve as an mTOR scaffold protein, the binding of which to the TOS motif of mTOR substrates is necessary for effective mTOR-catalyzed phosphorylation. Further understanding of regulation of the mTOR-raptor complex in response to the nutritional environment would require identification of the interplay between the mTOR-raptor complex and its upstream effectors such as the protein products of tumor suppressor gene tuberous sclerosis complexes 1 and 2, and the Ras-related small G protein Rheb.  相似文献   

16.
This study examined the role of osteopontin (OPN), a phosphorylated secreted glycoprotein, in the promotion of trophoblastic cell migration, an early event in the embryo implantation process. Three human choriocarcinoma cell lines, namely JAR, BeWo, and JEG-3, were treated with variants of OPN differing in the extent of phosphorylation following sequential dephosphorylation with tartrate-resistant acid phosphatase (TRAP), and their migratory response was measured. The highly phosphorylated human milk form of OPN (OPN-1) strongly triggered migration in all three cell lines, whereas the less phosphorylated variants, OPN-2a and OPN-2b, failed to stimulate migration. JAR cell migration in response to OPN-1 was accompanied by a rapid rearrangement of actin filaments to the cellular membrane. Using broad spectrum protein kinase profiling, we identified p70 S6 kinase as a major signal transduction pathway activated by OPN-1 during the migratory response in JAR cells. Activation was blocked completely by rapamycin and LY294002, thus demonstrating that OPN-1-stimulated migration occurs through mTOR and PI3K pathways, respectively. Conversely, PD98059 did not affect the activation of p70 S6 kinase by OPN-1, therefore, this response does not involve the Ras/ MAPK signaling cascade. Together, these data show that the highly phosphorylated human OPN-1 can stimulate trophoblastic cell migration and provides evidence for the involvement of the PI3K/mTOR/p70 S6 kinase pathway in the JAR cells response. Because both OPN and TRAP are expressed in the uterus during early pregnancy, it is conceivable that extracellular phosphatases such as TRAP may modify OPN charge state and thus modulate cell migration.  相似文献   

17.
K Ban  RA Kozar 《PloS one》2012,7(7):e41584
The mTOR signaling pathway plays a crucial role in the regulation of cell growth, proliferation, survival and in directing immune responses. As the intestinal epithelium displays rapid cell growth and differentiation and is an important immune regulatory organ, we hypothesized that mTOR may play an important role in the protection against intestinal ischemia reperfusion (I/R)-induced injury. To better understand the molecular mechanisms by which the mTOR pathway is altered by intestinal I/R, p70S6K, the major effector of the mTOR pathway, was investigated along with the effects of rapamycin, a specific inhibitor of mTOR and an immunosuppressant agent used clinically in transplant patients. In vitro experiments using an intestinal epithelial cell line and hypoxia/reoxygenation demonstrated that overexpression of p70S6K promoted cell growth and migration, and decreased cell apoptosis. Inhibition of p70S6K by rapamycin reversed these protective effects. In a mouse model of gut I/R, an increase of p70S6K activity was found by 5 min and remained elevated after 6 h of reperfusion. Inhibition of p70S6K by rapamycin worsened gut injury, promoted inflammation, and enhanced intestinal permeability. Importantly, rapamycin treated animals had a significantly increased mortality. These novel results demonstrate a key role of p70S6K in protection against I/R injury in the intestine and suggest a potential danger in using mTOR inhibitors in patients at risk for gut hypoperfusion.  相似文献   

18.
mTOR integrates amino acid- and energy-sensing pathways   总被引:1,自引:0,他引:1  
The AMP-activated protein kinase (AMPK) exists as a heterotrimetric complex comprising a catalytic alpha subunit and non-catalytic beta and gamma subunits. Under conditions of hypoxia, exercise, ischemia, heat shock, and low glucose, AMPK is activated allosterically by rising cellular AMP and by phosphorylation of the catalytic alpha subunit. The mammalian target of rapamycin (mTOR) controls cellular functions in response to amino acids and growth factors. Recent reports including our study have demonstrated the possible interplay between mTOR and AMPK signaling pathways, supporting a model in which mitochondrial dysfunction caused by the mitochondrial inhibitors or ATP depletion inhibits activation of p70 S6 kinase alpha (p70alpha), a downstream effector of mTOR, by activating AMPK. Leucine may stimulate p70alpha phosphorylation via mTOR pathway, in part, by serving both as a mitochondrial fuel through oxidative carboxylation and an allosteric activation of glutamate dehydrogenase. This hypothesis may support an idea in which leucine modulates mTOR function, in part by regulating mitochondrial function and AMPK. Further understanding of the role of mTOR in coordinating amino acid- and energy-sensing pathways would provide new insights into relationship between nutrients and cellular functions.  相似文献   

19.
We have previously shown that the vasoconstrictive peptide angiotensin II (ANG II) is a hypertrophic agent for human coronary artery smooth muscle cells (cSMCs), which suggests that it plays a role in vascular wall thickening. The present study investigated the intracellular signal transduction pathways involved in the growth response of cSMCs to ANG II. The stimulation of protein synthesis by ANG II in cSMCs was blocked by the immunosuppressant rapamycin, which is an inhibitor of the mammalian target of rapamycin (mTOR) signaling pathway that includes the 70-kDa S6 kinase (p70(S6k)) and plays a key role in cell growth. The inhibitory effect of rapamycin was reversed by a molar excess of FK506; this indicates that both agents act through the common 12-kDa immunophilin FK506-binding protein. ANG II caused a rapid and sustained activation of p70(S6k) activity that paralleled its phosphorylation, and both processes were blocked by rapamycin. In addition, both of the phosphatidylinositol 3-kinase inhibitors wortmannin and LY-294002 abolished the ANG II-induced increase in protein synthesis, and wortmannin also blocked p70(S6k) phosphorylation. Furthermore, ANG II triggered dissociation of the translation initiation factor, eukaryotic initiation factor-4E, from its regulatory binding protein 4E-BP1, which was also inhibited by rapamycin and wortmannin. In conclusion, we have shown that ANG II activates components of the rapamycin-sensitive mTOR signaling pathway in human cSMCs and involves activation of phosphatidylinositol 3-kinase, p70(S6k), and eukaryotic initiation factor-4E, which leads to activation of protein synthesis. These signaling mechanisms may mediate the growth-promoting effect of ANG II in human cSMCs.  相似文献   

20.
Amino acids have emerged as potent modulators of the mTOR/p70 S6 kinase pathway. The involvement of this pathway in the regulation of insulin-stimulated glucose transport was investigated in the present study. Acute exposure (1 h) to a balanced mixture of amino acids reduced insulin-stimulated glucose transport by as much as 55% in L6 muscle cells. The effect of amino acids was fully prevented by the specific mTOR inhibitor rapamycin. Time course analysis of insulin receptor substrate 1 (IRS-1)-associated phosphatidylinositol (PI) 3-kinase activity revealed that incubation with amino acids speeds up its time-dependent deactivation, leading to a dramatic suppression (-70%) of its activity after 30 min of insulin stimulation as compared with its maximal activation (5 min of stimulation). This accelerated deactivation of PI 3-kinase activity in amino acid-treated cells was associated with a concomitant and sustained increase in the phosphorylation of p70 S6 kinase. In marked contrast, inhibition of mTOR by rapamycin maintained PI 3-kinase maximally activated for up to 30 min. The marked inhibition of insulin-mediated PI 3-kinase activity by amino acids was linked to a rapamycin-sensitive increase in serine/threonine phosphorylation of IRS-1 and a decreased binding of the p85 subunit of PI 3-kinase to IRS-1. Furthermore, amino acids were required for the degradation of IRS-1 during long term insulin treatment. These results identify the mTOR/p70 S6 kinase signaling pathway as a novel modulator of insulin-stimulated glucose transport in skeletal muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号