首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of the first steps of the reaction catalyzed by HIV-1 protease was studied through molecular dynamics simulations. The potential energy surface in the active site was generated using the approximate valence bond method. The approximate valence bond (AVB) method was parameterized based on density functional calculations. The surrounding protein and explicit water environment was modeled with conventional, classical force field. The calculations were performed based on HIV-1 protease complexed with the MVT-101 inhibitor that was modified to a model substrate. The protonation state of the catalytic aspartates was determined theoretically. Possible reaction mechanisms involving the lytic water molecule are accounted for in this study. The modeled steps include the dissociation of the lytic water molecule and proton transfer onto Asp-125, the nucleophilic attack followed by a proton transfer onto peptide nitrogen. The simulations show that in the active site most preferable energetically are structures consisting of ionized or polarized molecular fragments that are not accounted for in conventional molecular dynamics. The mobility of the lytic water molecule, the dynamics of the hydrogen bond network, and the conformation of the aspartates in the active center were analyzed.  相似文献   

2.
Bihani S  Das A  Prashar V  Ferrer JL  Hosur MV 《Proteins》2009,74(3):594-602
HIV-1 protease is an effective target for design of different types of drugs against AIDS. HIV-1 protease is also one of the few enzymes that can cleave substrates containing both proline and nonproline residues at the cleavage site. We report here the first structure of HIV-1 protease complexed with the product peptides SQNY and PIV derived by in situ cleavage of the oligopeptide substrate SQNYPIV, within the crystals. In the structure, refined against 2.0-A resolution synchrotron data, a carboxyl oxygen of SQNY is hydrogen-bonded with the N-terminal nitrogen atom of PIV. At the same time, this proline nitrogen atom does not form any hydrogen bond with catalytic aspartates. These two observations suggest that the protonation of scissile nitrogen, during peptide bond cleavage, is by a gem-hydroxyl of the tetrahedral intermediate rather than by a catalytic aspartic acid.  相似文献   

3.
Friedman R  Caflisch A 《FEBS letters》2007,581(21):4120-4124
Assigning the correct protonation state to the catalytic residues is essential for a realistic modelling of an enzyme's active site. Plasmepsins are pharmaceutically relevant aspartic proteases involved in haemoglobin degradation by Plasmodium spp. In aspartic proteases, one of the two catalytic aspartates is protonated, while the other is negatively charged. Here, multiple explicit-water molecular dynamics simulations of plasmepsin II, uncomplexed and with a hydroxypropylamine peptidomimetic inhibitor, indicate that protonation of Asp214 favours a stable active site structure. Moreover, the protonation state of the catalytic aspartate has a strong influence on a linear chain of hydrogen bonds with the adjacent side chains.  相似文献   

4.
The hydrogen-bond network in various stages of the enzymatic reaction catalyzed by HIV-1 protease was studied through quantum-classical molecular dynamics simulations. The approximate valence bond method was applied to the active site atoms participating directly in the rearrangement of chemical bonds. The rest of the protein with explicit solvent was treated with a classical molecular mechanics model. Two possible mechanisms were studied, general-acid/general-base (GA/GB) with Asp 25 protonated at the inner oxygen, and a direct nucleophilic attack by Asp 25. Strong hydrogen bonds leading to spontaneous proton transfers were observed in both reaction paths. A single-well hydrogen bond was formed between the peptide nitrogen and outer oxygen of Asp 125. The proton was diffusely distributed with an average central position and transferred back and forth on a picosecond scale. In both mechanisms, this interaction helped change the peptide-bond hybridization, increased the partial charge on peptidyl carbon, and in the GA/GB mechanism, helped deprotonate the water molecule. The inner oxygens of the aspartic dyad formed a low-barrier, but asymmetric hydrogen bond; the proton was not positioned midway and made a slightly elongated covalent bond, transferring from one to the other aspartate. In the GA/GB mechanism both aspartates may help deprotonate the water molecule. We observed the breakage of the peptide bond and found that the protonation of the peptidyl amine group was essential for the peptide-bond cleavage. In studies of the direct nucleophilic mechanism, the peptide carbon of the substrate and oxygen of Asp 25 approached as close as 2.3 A.  相似文献   

5.
The mechanism of serine proteases prominently illustrates how charged amino acid residues and proton transfer events facilitate enzyme catalysis. Here we present an ultrahigh resolution (0.93 Å) x-ray structure of a complex formed between trypsin and a canonical inhibitor acting through a substrate-like mechanism. The electron density indicates the protonation state of all catalytic residues where the catalytic histidine is, as expected, in its neutral state prior to the acylation step by the catalytic serine. The carboxyl group of the catalytic aspartate displays an asymmetric electron density so that the Oδ2–Cγ bond appears to be a double bond, with Oδ2 involved in a hydrogen bond to His-57 and Ser-214. Only when Asp-102 is protonated on Oδ1 atom could a density functional theory simulation reproduce the observed electron density. The presence of a putative hydrogen atom is also confirmed by a residual mFobsDFcalc density above 2.5 σ next to Oδ1. As a possible functional role for the neutral aspartate in the active site, we propose that in the substrate-bound form, the neutral aspartate residue helps to keep the pKa of the histidine sufficiently low, in the active neutral form. When the histidine receives a proton during the catalytic cycle, the aspartate becomes simultaneously negatively charged, providing additional stabilization for the protonated histidine and indirectly to the tetrahedral intermediate. This novel proposal unifies the seemingly conflicting experimental observations, which were previously seen as either supporting the charge relay mechanism or the neutral pKa histidine theory.  相似文献   

6.

Background

It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures.

Principal Findings

We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates.

Conclusions/Significance

The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.  相似文献   

7.
8.
The crystal structure of the complex between human immunodeficiency virus type 1 (HIV-1) protease and a peptidomimetic inhibitor of ethyleneamine type has been refined to R factor of 0.178 with diffraction limit 2.5 A. The peptidomimetic inhibitor Boc-Phe-Psi[CH2CH2NH]-Phe-Glu-Phe-NH2 (denoted here as OE) contains the ethyleneamine replacement of the scissile peptide bond. The inhibitor lacks the hydroxyl group which is believed to mimic tetrahedral transition state of proteolytic reaction and thus is suspected to be necessary for good properties of peptidomimetic HIV-1 protease inhibitors. Despite the missing hydroxyl group the inhibition constant of OE is 1.53 nm and it remains in the nanomolar range also towards several available mutants of HIV-1 protease. The inhibitor was found in the active site of protease in an extended conformation with a unique hydrogen bond pattern different from hydroxyethylene and hydroxyethylamine inhibitors. The isostere nitrogen forms a hydrogen bond to one catalytic aspartate only. The other aspartate forms two weak hydrogen bridges to the ethylene group of the isostere. A comparison with other inhibitors of this series containing isostere hydroxyl group in R or S configuration shows different ways of accommodation of inhibitor in the active site. Special attention is devoted to intermolecular contacts between neighbouring dimers responsible for mutual protein adhesion and for a special conformation of Met46 and Phe53 side chains not expected for free protein in water solution.  相似文献   

9.
Allan Beveridge 《Proteins》1996,24(3):322-334
We have performed ab initio Hartree-Fock self-consistent field calculations on the active site of endothiapepsin. The active site was modeled as a formic acid/formate anion moiety (representing the catalytic aspartates, Asp-32 and -215) and a bound water molecule. Residues Gly-34, Ser-35, Gly-217, and Thr-218, which all form hydrogen bonds to the active site, were modeled using formamide and methanol molecules. The water molecule, which is generally believed to function as the attacking nucleophile in catalysis, was allowed to bind to the active site in four distinct configurations. The geometry of each configuration was optimized using two basis sets (4-31G and 4-31G*). The results indicate that in the native enzyme the nucleophilic water is bound in a catalytically inert configuration. However, by rotating the carboxyl group of Asp-32 by about 90° the water molecule can be reorientated to attack the scissile bond of the substrate. A model of the bound enzyme-substrate complex was constructed from the crystal structure of a difluorostatone inhibitor complexed with endothiapepsin. This model suggests that the substrate itself initiates the reorientation of the nucleophilic water immediately prior to catalysis by forcing the carboxyl group of Asp-32 to rotate. The theoretical results predict that the active site of endothiapepsin undergoes a large distortion during substrate binding and this observation has been used to explain some of the kinetics results which have been reported for mutant aspartic proteinases.  相似文献   

10.
Gamma-secretase performs the final processing step in the generation of amyloid-beta (Abeta) peptides, which are believed to be causative for Alzheimer's disease. Presenilins (PS) are required for gamma-secretase activity and the presence of two essential intramembranous aspartates (D257 and D385) has implicated this region as the putative catalytic centre of an aspartyl protease. The presence of several key hydrogen-bonding residues around the active site of classical aspartyl proteases led us to investigate the role of both the critical aspartates and two nearby conserved hydrogen bond donors in PS1. Generation of cell lines stably overexpressing the D257E, D385E, Y256F and Y389F engineered mutations has enabled us to determine their role in enzyme catalysis and binding of a transition state analogue gamma-secretase inhibitor. Here we report that replacement of either tyrosine residue alters gamma-secretase cleavage specificity, resulting in an increase in the production of the more pathogenic Abeta42 peptide in both cells and membranous enzyme preparations, without affecting inhibitor binding. In contrast, replacement of either of the aspartate residues precludes inhibitor binding in addition to inactivation of the enzyme. Together, these data further incriminate the region around the intramembranous aspartates as the active site of the enzyme, targeted by transition state analogue inhibitors, and highlight the roles of individual residues.  相似文献   

11.
The three-dimensional structures of the complexes of the aspartic proteinase from Rhizopus chinensis (Rhizopuspepsin, EC 3.4.23.6) with pepstatin and two pepstatin-like peptide inhibitors of renin have been determined by X-ray diffraction methods and refined by restrained least-squares procedures. The inhibitors adopt an extended conformation and lie in the deep groove located between the two domains of the enzyme. Inhibitor binding is accompanied by a conformational change at the "flap," a beta-hairpin loop region, that projects over the binding cleft and closes down over the inhibitor, excluding water molecules from the vicinity of the scissile bond. The hydroxyl group of the central statyl residue of the inhibitors replaces the water molecule found between the two active aspartates, Asp-35 and Asp-218, in the native structure. The refined structures provide additional data to define the specific subsites of the enzyme and also show a system of hydrogen bonding to the inhibitor backbone similar to that observed for a reduced inhibitor.  相似文献   

12.
Aspartates 25 and 125, the active site residues of HIV-1 protease, participate functionally in proteolysis by what is believed to be a general acid-general base mechanism. However, the structural role that these residues may play in the formation and maintenance of the neighboring S1/S1' substrate binding pockets remains largely unstudied. Because the active site aspartic acids are essential for catalysis, alteration of these residues to any other naturally occurring amino acid by conventional site-directed mutagenesis renders the protease inactive, and hence impossible to characterize functionally. To investigate whether Asp-25 and Asp-125 may also play a structural role that influences substrate processing, a series of active site protease mutants has been produced in a cell-free protein synthesizing system via readthrough of mRNA nonsense (UAG) codons by chemically misacylated suppressor tRNAs. The suppressor tRNAs were activated with the unnatural aspartic acid analogues erythro-beta-methylaspartic acid, threo-beta-methylaspartic acid, or beta,beta-dimethylaspartic acid. On the basis of the specific activity measurements of the mutants that were produced, the introduction of the beta-methyl moiety was found to alter protease function to varying extents depending upon its orientation. While a beta-methyl group in the erythro orientation was the least deleterious to the specific activity of the protease, a beta-methyl group in the threo orientation, present in the modified proteins containing threo-beta-methylaspartate and beta,beta-dimethylaspartate, resulted in specific activities between 0 and 45% of that of the wild type depending upon the substrate and the substituted active site position. Titration studies of pH versus specific activity and inactivation studies, using an aspartyl protease specific suicide inhibitor, demonstrated that the mutant proteases maintained bell-shaped pH profiles, as well as suicide-inhibitor susceptibilities that are characteristic of aspartyl proteases. A molecular dynamics simulation of the beta-substituted aspartates in position 25 of HIV-1 protease indicated that the threo-beta-methyl moiety may partially obstruct the adjacent S1' binding pocket, and also cause reorganization within the pocket, especially with regard to residues Val-82 and Ile-84. This finding, in conjunction with the biochemical studies, suggests that the active site aspartate residues are in proximity to the S1/S1' binding pocket and may be spatially influenced by the residues presented in these pockets upon substrate binding. It thus seems possible that the catalytic residues cooperatively interact with the residues that constitute the S1/S1' binding pockets and can be repositioned during substrate binding to orient the active site carboxylates with respect to the scissile amide bond, a process that likely affects the facility of proteolysis.  相似文献   

13.
Two active site residues, Asp-98 and His-255, of copper-containing nitrite reductase (NIR) from Alcaligenes faecalis have been mutated to probe the catalytic mechanism. Three mutations at these two sites (D98N, H255D, and H255N) result in large reductions in activity relative to native NIR, suggesting that both residues are involved intimately in the reaction mechanism. Crystal structures of these mutants have been determined using data collected to better than 1. 9-A resolution. In the native structure, His-255 Nepsilon2 forms a hydrogen bond through a bridging water molecule to the side chain of Asp-98, which also forms a hydrogen bond to a water or nitrite oxygen ligated to the active site copper. In the D98N mutant, reorientation of the Asn-98 side chain results in the loss of the hydrogen bond to the copper ligand water, consistent with a negatively charged Asp-98 directing the binding and protonation of nitrite in the native enzyme. An additional solvent molecule is situated between residues 255 and the bridging water in the H255N and H255D mutants and likely inhibits nitrite binding. The interaction of His-255 with the bridging water appears to be necessary for catalysis and may donate a proton to reaction intermediates in addition to Asp-98.  相似文献   

14.
Seibold SA  Cukier RI 《Proteins》2007,69(3):551-565
HIV proteases can develop resistance to therapeutic drugs by mutating specific residues, but still maintain activity with their natural substrates. To gain insight into why mutations confer such resistance, long ( approximately 70 ns) Molecular Dynamics simulations in explicit solvent were performed on a multiple drug resistant (MDR) mutant (with Asn25 in the crystal structure mutated in silico back to the catalytically active Asp25) and a wild type (WT) protease. HIV proteases are homodimers, with characteristic flap tips whose conformations and dynamics are known to be important influences of ligand binding to the aspartates that form the catalytic center. The WT protease undergoes a transition between 25 and 35 ns that is absent in the MDR protease. The origin of this distinction is investigated using principal component analysis, and is related to differences in motion mainly in the flap region of each monomer. Trajectory analysis suggests that the WT transition arises from a concerted motion of the flap tip distances to their catalytic aspartate residues, and the distance between the two flap tips. These distances form a triangle that in the WT expands the active site from an initial (semi-open) form to an open form, in a correlated manner. In contrast, the MDR protease remains in a more closed configuration, with uncorrelated fluctuations in the distances defining the triangle. This contrasting behavior suggests that the MDR mutant achieves its resistance to drugs by making its active site less accessible to inhibitors. The migration of water to the active site aspartates is monitored. Water molecules move in and out of the active site and individual waters hydrogen bond to both aspartate carboxylate oxygens, with residence times in the ns time regime.  相似文献   

15.
Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 ? resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.  相似文献   

16.
HIV-1 protease is a key target in treating HIV infection and AIDS, with 10 inhibitors used clinically. Here we used an unusual hexapeptide substrate, containing two macrocyclic tripeptides constrained to mimic a beta strand conformation, linked by a scissile peptide bond, to probe the structural mechanism of proteolysis. The substrate has been cocrystallized with catalytically active synthetic HIV-1 protease and an inactive isosteric (D25N) mutant, and three-dimensional structures were determined (1.60 A). The structure of the inactive HIVPR(D25N)/substrate complex shows an intact substrate molecule in a single orientation that perfectly mimics the binding of conventional peptide ligands of HIVPR. The structure of the active HIVPR/product complex shows two monocyclic hydrolysis products trapped in the active site, revealing two molecules of the N-terminal monocyclic product bound adjacent to one another, one molecule occupying the nonprime site, as expected, and the other monocycle binding in the prime site in the reverse orientation. The results suggest that both hydrolysis products are released from the active site upon cleavage and then rebind to the enzyme. These structures reveal that N-terminal binding of ligands is preferred, that the C-terminal site is more flexible, and that HIVPR can recognize substrate shape rather than just sequence alone. The product complex reveals three carboxylic acids in an almost planar orientation, indicating an unusual hexagonal homodromic complex between three carboxylic acids. The data presented herein regarding orientation of catalytic aspartates support the cleavage mechanism proposed by Northrop. The results imply strategies for design of inhibitors targeting the N-terminal side of the cleavage site or taking advantage of the flexibility in the protease domain that accommodates substrate/inhibitor segments C-terminal to the cleavage site.  相似文献   

17.
The bacterial serine protease, SGPB, was inhibited by two specific tripeptide chloromethyl ketones, N-t-butyloxycarbonyl-l-alanylglycyl-l-phenylalanine chloromethyl ketone (BocAGFCK) and N-t-butyloxycarbonyl-glycyl-l-leucyl-l-phenylalanine chloromethyl ketone (BocGLFCK). Crystals of the inhibited complexes were grown and examined by X-ray crystallographic methods. The peptide backbone of each inhibitor is bound by three hydrogen bonds to the main chain of residues Ser214 to Gly216. There are two well-characterized hydrophobic pockets, S1 and S2, on the surface of SGPB which accommodate the P1 and P2 side-chains of the BocGLFCK inhibitor. A conformational change of Tyr171 is induced by the binding of this inhibitor. Both inhibitors make two covalent bonds to the SGPB enzyme. The imidazole ring of His57 is alkylated at the N?2 atom and Oγ of Ser195 forms a hemiketal bond with the carbonyl-carbon atom of the inhibitor. Comparison of the binding modes of the two tripeptides in conjunction with the differences in their inhibition constants (KI) allows one to estimate the binding energy of the leucyl side-chain as ?2.6 kcal mol?1. The importance of an electrophilic component in the serine protease mechanism, which involves the polarization of the susceptible carbonyl bond of a substrate or inhibitor by the peptide NH groups of Gly193 and Ser195 is discussed.  相似文献   

18.
W W Bachovchin 《Biochemistry》1986,25(23):7751-7759
Nitrogen-15 NMR spectroscopy has been used to study the hydrogen-bonding interactions involving the histidyl residue in the catalytic triad of alpha-lytic protease in the resting enzyme and in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate. The 15N shifts indicate that a strong hydrogen bond links the active site histidine and serine residues in the resting enzyme in solution. This result is at odds with interpretations of the X-ray diffraction data of alpha-lytic protease and of other serine proteases, which indicate that the serine and histidine residues are too far apart and not properly aligned for the formation of a hydrogen bond. In addition, the nitrogen-15 shifts demonstrate that protonation of the histidine imidazole ring at low pH in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate triggers the disruption of the aspartate-histidine hydrogen bond. These results suggest a catalytic mechanism involving directed movement of the imidazole ring of the active site histidyl residue.  相似文献   

19.
The conformation of the synthetic renin inhibitor CP-69,799, bound to the active site of the fungal aspartic proteinase endothiapepsin (EC 3.4.23.6), has been determined by X-ray diffraction at 1.8 A resolution and refined to the crystallographic R factor of 16%. CP-69,799 is an oligopeptide transition--state analogue inhibitor that contains a new dipeptide isostere at the P1-P1' position. This dipeptide isostere is a nitrogen analogue of the well-explored hydroxyethylene dipeptide isostere, wherein the tetrahedral P1' C alpha atom has been replaced by trigonal nitrogen. The inhibitor binds in the extended conformation, filling S4 to S3' pockets, with hydroxyl group of the P1 residue positioned symmetrically between the two catalytic aspartates of the enzyme. Interactions between the inhibitor and the enzyme include 12 hydrogen bonds and extensive van der Waals contacts in all the pockets, except for S3'. The crystal structure reveals a bifurcated orientation of the P2 histidine side chain and an interesting relative rotation of the P3 phenyl ring to accommodate the cyclohexyl side chain at P1. The binding of the inhibitor to the enzyme, while producing no large distortions in the enzyme active site cleft, results in small but significant change in the relative orientation of the two endothiapepsin domains. This structural change may represent the action effected by the proteinase as it distorts its substrate towards the transition state for proteolytic cleavage.  相似文献   

20.
The X-ray structures of native endothiapepsin and a complex with a hydroxyethylene transition state analog inhibitor (H261) have been determined at atomic resolution. Unrestrained refinement of the carboxyl groups of the enzyme by using the atomic resolution data indicates that both catalytic aspartates in the native enzyme share a single negative charge equally; that is, in the crystal, one half of the active sites have Asp 32 ionized and the other half have Asp 215 ionized. The electron density map of the native enzyme refined at 0.9 A resolution demonstrates that there is a short peptide (probably Ser-Thr) bound noncovalently in the active site cleft. The N-terminal nitrogen of the dipeptide interacts with the aspartate diad of the enzyme by hydrogen bonds involving the carboxyl of Asp 215 and the catalytic water molecule. This is consistent with classical findings that the aspartic proteinases can be inhibited weakly by short peptides and that these enzymes can catalyze transpeptidation reactions. The dipeptide may originate from autolysis of the N-terminal Ser-Thr sequence of the enzyme during crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号