首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
To understand the mechanisms whereby recurrent hypoglycemia increases the risk of subsequent hypoglycemia, it was necessary to differentiate the effects of recurrent hyperinsulinemia from those of hyperinsulinemic hypoglycemia. We examined basal and hypoglycemic endocrine function in normal rats, streptozotocin-diabetic controls, and diabetic rats exposed to 4 days of 2 episodes/day of hyperinsulinemic hypoglycemia (DH) or hyperinsulinemic hyperglycemia (DI). DH and DI rats differentiated the effects of hyperinsulinemia from those of hypoglycemia. In diabetic controls, basal plasma ACTH tended to be increased, and plasma corticosterone, plasma somatostatin, and pancreatic prosomatostatin and proglucagon mRNA were increased (P < 0.05) vs. normal rats. These parameters were normalized in DH and DI rats. In diabetic controls, glucagon, epinephrine, norepinephrine, corticosterone, and peak glucose production responses to hypoglycemia were reduced (P < 0.05) vs. normal rats. In DI rats, epinephrine responses were normalized. Conversely, DH rats displayed marked further impairment of epinephrine and glucose production responses and increased peripheral insulin sensitivity (P < 0.05 vs. diabetic controls). Both insulin regimens partially normalized glucagon and fully normalized norepinephrine and corticosterone responses. In summary, recurrent hyperinsulinemia in diabetic rats normalized most pituitary-adrenal, sympathoadrenal, and pancreatic parameters. However, concurrent hypoglycemia further impaired epinephrine and glucose production responses and increased insulin sensitivity. We conclude that 1) recurrent hypoglycemia may increase the risk of subsequent hypoglycemia by increasing insulin sensitivity, and 2) epinephrine counterregulation is particularly sensitive to impairment by recurrent hypoglycemia.  相似文献   

4.
5.
Adiponectin is a fat-derived hormone with insulin-sensitizing properties. In patients with type 2 diabetes plasma adiponectin levels are decreased. Since these patients are characterized by high plasma insulin and glucose concentrations, hyperinsulinemia and hyperglycemia could be responsible for the downregulation of adiponectin. Insulin decreases adiponectin levels in humans. The effect of hyperglycemia is unknown. To determine the selective effects of insulin, glucose, or their combination on plasma adiponectin, clamps were performed in six healthy males on four occasions in a crossover design: 1) lower insulinemic-euglycemic clamp (100 pmol/l insulin, 5 mmol/l glucose) (reference clamp); 2) hyperinsulinemic-euglycemic clamp (400 pmol/l insulin, 5 mmol/l glucose); 3) lower insulinemic-hyperglycemic clamp (100 pmol/l insulin, 12 mmol/l glucose); and 4) hyperinsulinemic-hyperglycemic clamp (400 pmol/l insulin, 12 mmol/l glucose). Adiponectin concentrations and high-molecular-weight (HMW)-to-total adiponectin ratio were measured at the start and end of the 6-h clamps. After the 6-h study period, total plasma adiponectin levels were significantly (P = 0.045) decreased by 0.63 microg/ml in the lower insulinemic-euglycemic clamp (clamp 1). In both euglycemic groups (clamps 1 and 2) adiponectin concentrations significantly declined (P = 0.016) over time by 0.56 microg/ml, whereas there was no change in both hyperglycemic groups (clamps 3 and 4) (P = 0.420). In none of the clamps did the ratio of HMW to total adiponectin change. We conclude that insulin suppresses plasma adiponectin levels already at a plasma insulin concentration of 100 pmol/l. Hyperglycemia prevents the suppressive effect of insulin. This suggests that, in contrast to glucose, insulin could be involved in the downregulation of plasma adiponectin in insulin-resistant patients.  相似文献   

6.
To address the question whether an increase in insulinemia and/or glycemia affects the total activity of lipoprotein lipase (LPL) in circulation, the enzyme activity was measured after periods of hyperinsulinemia (HI), hyperglycemia (HG), and combined hyperinsulinemia and hyperglycemia (HIHG) induced by euglycemic hyperglycemic clamp, hyperglycemic clamp with the infusion of somatostatin to inhibit endogenous insulin secretion, and hyperglycemic clamp, respectively. The results obtained were compared to those after saline infusion (C). Twelve healthy normolipidemic and non-obese men with normal glucose tolerance were included in the study. At the end of each clamp study, LPL activity was determined first in vivo using an intravenous fat tolerance test and then in vitro in postheparin plasma. Whereas isolated HI had no effect on LPL activity in postheparin plasma, both HG and HIHG reduced LPL activity to 60 % and 56 % of that observed after saline infusion. Similarly, the k2 rate constant determined in intravenous fat tolerance test was reduced to 95 %, 84 %, and 54 % after periods of HI, HG, and HIHG, respectively. The activity of hepatic lipase, another lipase involved in lipoprotein metabolism, was not affected by hyperinsulinemia and/or hyperglycemia. In conclusion, our data suggest that hyperglycemia per se can downregulate the total LPL activity in circulation.  相似文献   

7.
8.
Hyperglycemia and skeletal muscle insulin resistance coexist in uncontrolled type 2 diabetes mellitus. Similar defects in insulin action were observed in glucose-infused, normal rats, a model of glucose toxicity. In these rats insulin-stimulated glucose uptake by skeletal muscle was decreased due to a post-receptor defect. We investigated whether the impaired glucose uptake resulted from a decrease in the abundance of the predominant muscle glucose transporter (GLUT4) mRNA and/or protein. GLUT4 protein abundance in the hyperglycemic rats was not different from the control group despite a 50% decrease in muscle glucose uptake. GLUT4 mRNA abundance was 2.5-fold greater in the hyperglycemic rats as compared to the control animals. We conclude that the coexistence of hyperglycemia and hyperinsulinemia results in (1) a defect in GLUT4 compartmentalization and/or functional activity and (2) a divergence between GLUT4 mRNA levels and translation.  相似文献   

9.
There is no clear relation between portal systemic shunting, reduced hepatic insulin extraction leading to an increased systemic delivery of insulin, and, resultant peripheral hyperinsulinemia and insulin resistance. Extrahepatic portal vein obstruction is a natural human model of portal systemic shunting with essentially normal liver function. To investigate the role of portal systemic shunting of insulin in creating systemic hyperinsulinemia and insulin resistance, we studied nine subjects with portal systemic shunting and nine controls matched for age (+/- 2 years), body weight (+/- 2 kg) and height (+/- 5 cm). We carried out an oral glucose tolerance test and hyperinsulinemic euglycemic clamp study at insulin infusion rate of 40 mU/m2/ min. Comparable (p = 0.61) basal insulin concentrations in the two groups (Mean (SE): 21.0 (3.98) vs. 24.1 (4.28) mU/L) demonstrated a lack of hyperinsulinemia in the presence of portal systemic shunting. The lower (p = 0.03) insulin area under curve on oral glucose tolerance test in presence of portal systemic shunting (7.40 (0.95) vs. 10.83 (1.15) U/L-min) indicated that lower extraction of insulin by the liver leads to a lower requirements in the periphery. The coefficient of variation for plasma glucose between 60 and 120 min of the clamps was 4.44 (0.55)%. Comparable (p = 0.82) M-values (6.21 (0.67) vs. 6.38 (0.45) mg/kg/min) in the two groups proved a lack of significant insulin resistance in the presence of portal systemic shunting. We conclude that isolated portal systemic shunting leads to neither hyperinsulinemia nor insulin resistance.  相似文献   

10.
In our previous studies in nondiabetic dogs and humans, insulin suppressed glucose production (GP) by both an indirect extrahepatic and a direct hepatic effect. However, insulin had no direct effect on GP in diabetic depancreatized dogs under conditions of moderate hyperglycemia. The present study was designed to investigate whether insulin can inhibit GP by a direct effect in this model under conditions of euglycemia. Depancreatized dogs were made euglycemic (approximately 6 mmol/l), rather than moderately hyperglycemic (approximately 10 mmol/l) as in our previous studies, by basal portal insulin infusion. After approximately 100 min of euglycemia, a hyperinsulinemic euglycemic clamp was performed by giving an additional infusion of insulin either portally (POR) or peripherally at about one-half the rate (1/2 PER) to match the peripheral venous insulin concentrations. The greater hepatic insulin load in POR resulted in greater suppression of GP (from 16.5 +/- 1.8 to 12.2 +/- 1.6 micromol. kg(-1). min(-1)) than 1/2 PER (from 17.8 +/- 1.9 to 15.6 +/- 2.0 micromol. kg(-1). min(-1), P < 0.001 vs. POR), consistent with insulin having a direct hepatic effect in suppressing GP. We conclude that the direct effect of insulin to inhibit GP is present in diabetic depancreatized dogs under conditions of acutely induced euglycemia. These results suggest that, in diabetes, the prevailing glycemic level is a determinant of the balance between insulin's direct and indirect effects on GP.  相似文献   

11.
12.
The mechanisms of the impairment in hepatic glucose metabolism induced by free fatty acids (FFAs) and the importance of FFA oxidation in these mechanisms remain unclear. FFA-induced peripheral insulin resistance has been linked to membrane translocation of novel protein kinase C (PKC) isoforms, but the role of PKC in hepatic insulin resistance has not been assessed. To investigate the biochemical pathways that are induced by FFA in the liver and their relation to glucose metabolism in vivo, we determined endogenous glucose production (EGP), the hepatic content of citrate (product of acetyl-CoA derived from FFA oxidation and oxaloacetate), and hepatic PKC isoform translocation after 2 and 7 h Intralipid + heparin (IH) or SAL in rats. Experiments were performed in the basal state and during hyperinsulinemic clamps (insulin infusion rate, 5 mU. kg(-1). min(-1)). IH increased EGP in the basal state (P < 0.001) and during hyperinsulinemia (P < 0.001) at 2 and 7 h. Also, 7-h infusion of IH induced resistance to the suppressive effect of insulin on EGP (P < 0.05). Glycerol infusion (resulting in plasma glycerol levels similar to IH infusion) did not have any effect on EGP. IH increased hepatic citrate content by twofold, independent of the insulin levels and the duration of IH infusion. IH induced hepatic PKC-delta translocation from the cytosolic to membrane fraction in all groups. PKC-delta translocation was greater at 7 compared with 2 h (P < 0.05). In conclusion, 1) increased FFA oxidation may contribute to the FFA-induced increase in EGP in the basal state and during hyperinsulinemia but is not associated with FFA-induced hepatic insulin resistance, and 2) the progressive insulin resistance induced by FFA in the liver is associated with a progressive increase in hepatic PKC-delta translocation.  相似文献   

13.
Diabetes of the mother during pregnancy induces alterations in the fetus, resulting in impaired glucose homeostasis in the offspring. In youngsters of severely diabetic mothers, during glucose infusion, hyperinsulinemia is associated with hyperresponsiveness of the beta-cells and insulin resistance. In order to normalize maternal metabolism, isolated islets from neonatal rats were transplanted into the vena porta of severely hyperglycemic (Streptozotocin) rats at day 15 of gestation. Strict glycemic control of the mothers was achieved throughout further gestation and lactation. In the adult offspring of these transplanted rats insulin levels during glucose infusion were significantly lower than in the offspring of sham-transplanted diabetic mothers and were not different from controls. The work confirms that the diabetic state of the mother during late gestation (the period of development of the endocrine pancreas and of the insulin-receptor system) is the inducing factor for the abnormal glucose homeostasis in the offspring, and normalisation of the hyperglycemia eliminates these long-term consequences.  相似文献   

14.
Although isoproterenol is a very effective hyperglycemic agent in dogs, other species such as rats, baboons and man are resistant to this effect. In each of these species catecholamines exert pronounced effects on insulin and glucagon release from the pancreas. In man, baboons, and rats catecholamine-induced alterations in pancreatic hormone release indirectly influence the hyperglycemic response to these amines: glucagon release supports and insulin release limits hyperglycemic responses. In contrast, the present study demonstrates that in dogs catecholamine-induced hyperglycemic responses are relatively independent of concurrent alterations in pancreatic hormone release. In dogs isoproterenol produces hyperglycemia equal to or greater than responses to epinephrine despite large increases in insulin release produced by isoproterenol. Moreover, catecholamine-induced hyperglycemia is not significantly altered when insulin and glucagon release are blocked with somatostatin.  相似文献   

15.
This study aimed to differentiate the effects of repeated antecedent hypoglycemia, antecedent marked hyperinsulinemia, and antecedent increases in corticosterone on counterregulation to subsequent hypoglycemia in normal rats. Specifically, we examined whether exposure to hyperinsulinemia or elevated corticosterone per se could impair subsequent counterregulation. Four groups of male Sprague-Dawley rats were used: 1) normal controls (N) had 4 days of sham antecedent treatment; 2) an antecedent hypoglycemia group (AH) had 7 episodes of hyperinsulinemic hypoglycemia over 4 days; 3) an antecedent hyperinsulinemia group (AE) had 7 episodes of hyperinsulinemic euglycemia; and 4) an antecedent corticosterone group (AC) had 7 episodes of intravenous corticosterone to simulate the hypoglycemic corticosterone levels in AH rats. On day 5, hyperinsulinemic euglycemic-hypoglycemic clamps were performed. Epinephrine responses to hypoglycemia were impaired (P < 0.05 vs. N) after antecedent hypoglycemia and hyperinsulinemia. This correlated with diminished (P < 0.05 vs. N) absolute glucose production responses in AH rats and diminished incremental glucose production responses in AE rats. Paradoxically, norepinephrine responses were increased (P < 0.05 vs. N) after antecedent hypoglycemia. Glucagon and corticosterone responses were unaffected by antecedent hypoglycemia and hyperinsulinemia. In AC rats, incremental but not absolute glucose production responses were decreased (P < 0.05 vs. N). However, neuroendocrine counterregulation was unaltered. We conclude that both antecedent hypoglycemia and hyperinsulinemia impair epinephrine and glucose production responses to subsequent hypoglycemia, suggesting that severe recurrent hyperinsulinemia may contribute to the development of hypoglycemia-associated autonomic failure.  相似文献   

16.
Hyperinsulinemia and oxidative stress   总被引:2,自引:0,他引:2  
The aim of the study was to compare the effect of short-term hyperglycemia and short-term hyperinsulinemia on parameters of oxidative stress in Wistar rats. Twenty male rats (aged 3 months, average weight 325 g) were tested by hyperinsulinemic clamp (100 IU/l) at two different glycemia levels (6 and 12 mmol/l). Further 20 rats were used as a control group infused with normal saline (instead of insulin) and 30 % glucose simultaneously. Measured parameters of oxidative stress were malondialdehyd (MDA), reduced glutathion (GSH) and total antioxidant capacity (AOC). AOC remained unchanged during hyperglycemia and hyperinsulinemia. Malondialdehyde (as a marker of lipid peroxidation) decreased significantly (p<0.05) during the euglycemic hyperinsulinemic clamp, and increased significantly during isolated hyperglycemia without hyperinsulinemia. Reduced glutathion decreased significantly (p<0.05) during hyperglycemia without hyperinsulinemia. These results suggest that the short-term exogenous hyperinsulinemia reduced the production of reactive oxygen species (ROS) during hyperglycemia in an animal model compared with the control group.  相似文献   

17.
Obesity is frequently associated with the consumption of high carbohydrate/fat diets leading to hyperinsulinemia. We have demonstrated that soy protein (SP) reduces hyperinsulinemia, but it is unclear by which mechanism. Thus, the purpose of the present work was to establish whether SP stimulates insulin secretion to a lower extent and/or reduces insulin resistance, and to understand its molecular mechanism of action in pancreatic islets of rats with diet-induced obesity. Long-term consumption of SP in a high fat (HF) diet significantly decreased serum glucose, free fatty acids, leptin, and the insulin:glucagon ratio compared with animals fed a casein HF diet. Hyperglycemic clamps indicated that SP stimulated insulin secretion to a lower extent despite HF consumption. Furthermore, there was lower pancreatic islet area and insulin, SREBP-1, PPARgamma, and GLUT-2 mRNA abundance in comparison with rats fed the casein HF diet. Euglycemic-hyperinsulinemic clamps showed that the SP diet prevented insulin resistance despite consumption of a HF diet. Incubation of pancreatic islets with isoflavones reduced insulin secretion and expression of PPARgamma. Addition of amino acids resembling the plasma concentration of rats fed casein stimulated insulin secretion; a response that was reduced by the presence of isoflavones, whereas the amino acid pattern resembling the plasma concentration of rats fed SP barely stimulated insulin release. Infusion of isoflavones during the hyperglycemic clamps did not stimulate insulin secretion. Therefore, isoflavones as well as the amino acid pattern seen after SP consumption stimulated insulin secretion to a lower extent, decreasing PPARgamma, GLUT-2, and SREBP-1 expression, and ameliorating hyperinsulinemia observed during obesity.  相似文献   

18.
Ghrelin is a novel peptide that acts on the growth hormone (GH) secretagogue receptor in the pituitary and hypothalamus. It may function as a third physiological regulator of GH secretion, along with GH-releasing hormone and somatostatin. In addition to the action of ghrelin on the GH axis, it appears to have a role in the determination of energy homeostasis. Although feeding suppresses ghrelin production and fasting stimulates ghrelin release, the underlying mechanisms controlling this process remain unclear. The purpose of this study was to test the hypotheses, by use of a stepped hyperinsulinemic eu- hypo- hyperglycemic glucose clamp, that either hyperinsulinemia or hypoglycemia may influence ghrelin production. Having been stable in the period before the clamp, ghrelin levels rapidly fell in response to insulin infusion during euglycemia (baseline ghrelin 207 +/- 12 vs. 169 +/- 10 fmol/ml at t = 30 min, P < 0.001). Ghrelin remained suppressed during subsequent periods of hypoglycemia (mean glucose 53 +/- 2 mg/dl) and hyperglycemia (mean glucose 163 +/- 6 mg/dl). Despite suppression of ghrelin, GH showed a significant rise during hypoglycemia (baseline 4.1 +/- 1.3 vs. 28.2 +/- 3.9 microg/l at t = 120 min, P < 0.001). Our data suggest that insulin may suppress circulating ghrelin independently of glucose, although glucose may have an additional effect. We conclude that the GH response seen during hypoglycemia is not regulated by circulating ghrelin.  相似文献   

19.
As a new mouse model of obesity-induced diabetes generated by combining quantitative trait loci from New Zealand Obese (NZO/HlLt) and Nonobese Nondiabetic (NON/LtJ) mice, NONcNZO10/LtJ (RCS10) male mice developed type 2 diabetes characterized by maturity onset obesity, hyperglycemia, and insulin resistance. To metabolically profile the progression to diabetes in preobese and obese states, a 2-h hyperinsulinemic euglycemic clamp was performed and organ-specific changes in insulin action were assessed in awake RCS10 and NON/LtJ (control) males at 8 and 13 wk of age. Prior to development of obesity and attendant increases in hepatic lipid content, 8-wk-old RCS10 mice developed insulin resistance in liver and skeletal muscle due to significant decreases in insulin-stimulated glucose uptake and GLUT4 expression in muscle. Transition to an obese and hyperglycemic state by 13 wk of age exacerbated insulin resistance in skeletal muscle, liver, and heart associated with organ-specific increases in lipid content. Thus, this polygenic mouse model of type 2 diabetes, wherein plasma insulin is only modestly elevated and obesity develops with maturity yet insulin action and glucose metabolism in skeletal muscle and liver are reduced at an early prediabetic age, should provide new insights into the etiology of type 2 diabetes.  相似文献   

20.
When cerebral glucoprivation is induced by injection of 2-deoxy-D-glucose, the sympathetic nervous system is activated with adrenal release of epinephrine and hepatic glycogenolysis causing an abrupt hyperglycemia. The threshold plasma concentration of 2-DG initiating this hyperglycemic response was determined during a slow i.v. infusion of 2-DG and used to assess the sensitivity of the CNS to such glucoprivation. It was found that (1) the hyperglycemic response to 2-DG is generally similar in dog and goat, (2) the 2-DG threshold is lower in the normal goat than in the dog, and (3) the ratio of plasma 2-DG/glucose concentrations at initiation of the hyperglycemic response was remarkably constant despite differences in plasma glucose levels, holding even for goats with glucose levels elevated by glucose injection to above those of dogs. These results were interpreted as indicating that the sensitivity of the CNS with respect to this hyperglycemic response, which is a homeostatic control, was similar in dog and goat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号