首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protonated peptides derived from proline‐rich proteins (PRP) are often difficult to sequence by standard collision‐induced dissociation (CID) mass spectrometry (MS) due to preferential amide bond cleavage N‐terminal to proline. In connection with bovine spongiform encephalopathy regulations, proteolytic products derived from the PRP collagen have been suggested as markers for contamination of animal feedstuffs with processed animal protein (Fernandez Ocaña, M. et al., Analyst 2004, 129, 111–115). Herein, we report the identification of these marker peptides using the strategy of C‐terminal sequencing by CID MS from their sodium and lithium adducts. Upon fragmentation a new cationized peptide was produced that is one C‐terminal amino acid shorter in length. This dissociation pathway allowed for the facile identification of the C‐terminal residue by matrix‐assisted laser desorption/ionization tandem time‐of‐flight mass spectrometry. Each newly formed cationized peptide was further fragmented by up to seven stages of electrospray ionization ion trap MS. Proline‐rich C‐terminal sequence tags were established which permitted successful database identification of collagen alpha type I proteins.  相似文献   

2.
The proteins secreted by prostate cancer cells (PC3(AR)6) were separated by strong anion exchange chromatography, digested with trypsin and analyzed by unbiased liquid chromatography tandem mass spectrometry with an ion trap. The spectra were matched to peptides within proteins using a goodness of fit algorithm that showed a low false positive rate. The parent ions for MS/MS were randomly and independently sampled from a log-normal population and therefore could be analyzed by ANOVA. Normal distribution analysis confirmed that the parent and fragment ion intensity distributions were sampled over 99.9% of their range that was above the background noise. Arranging the ion intensity data with the identified peptide and protein sequences in structured query language (SQL) permitted the quantification of ion intensity across treatments, proteins and peptides. The intensity of 101,905 fragment ions from 1421 peptide precursors of 583 peptides from 233 proteins separated over 11 sample treatments were computed together in one ANOVA model using the statistical analysis system (SAS) prior to Tukey-Kramer honestly significant difference (HSD) testing. Thus complex mixtures of proteins were identified and quantified with a high degree of confidence using an ion trap without isotopic labels, multivariate analysis or comparing chromatographic retention times.  相似文献   

3.
A technique that combines ion mobility spectrometry (IMS) with reversed-phase liquid chromatography (LC), collision-induced dissociation (CID) and mass spectrometry (MS) has been developed. The approach is described as a high throughput means of analysing complex mixtures of peptides that arise from enzymatic digestion of protein mixtures. In this approach, peptides are separated by LC and, as they elute from the column, they are introduced into the gas phase and ionised by electrospray ionisation. The beam of ions is accumulated in an ion trap and then the concentrated ion packet is injected into a drift tube where the ions are separated again in the gas phase by IMS, a technique that differentiates ions based on their mobilities through a buffer gas. As ions exit the drift tube, they can be subjected to collisional activation to produce fragments prior to being introduced into a mass spectrometer for detection. The IMS separation can be carried out in only a few milliseconds and offers a number of advantages compared with LC-MS alone. An example of a single 21-minute LC-IMS-(CID)-MS analysis of the human plasma proteome reveals approximately 20,000 parent ions and approximately 600,000 fragment ions and evidence for 227 unique protein assignments.  相似文献   

4.
Juárez P  Sanz L  Calvete JJ 《Proteomics》2004,4(2):327-338
The protein composition of the crude venom of Sistrurus barbouri was analyzed by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins were separated by reversed phase high-performance liquid chromatography and characterized by N-terminal sequence analysis. The molecular mass and number of cysteine residues of the purified proteins were determined by matrix-associated laser desorption/ionization-time of flight mass spectrometry. Selected protein bands were subjected to in-gel tryptic digestion and peptide mass fingerprinting. Analysis of the tandem mass spectrometry spectra of selected doubly-charged peptide ions was done by collision-induced dissociation in a quadrupole-linear ion trap instrument. Our results show that the venom proteome of the pigmy rattlesnake S. barbouri is composed of proteins belonging to a few protein families, which can be structurally characterized by their disulfide bond contents.  相似文献   

5.
Here we discuss the fascinating chemistry and physics of microsolvated ions that bridge the transition from bare ions in gas phase to ions in solution. Such ions occur in many situations in biochemistry and are crucial for several functions; metal ions, for example, must remove their water shell to pass through ion pumps in membranes. Furthermore, only a few water molecules are buried in the hydrophobic pockets of proteins where they are bound to charged amino acid residues or ionic chromophores. Another aspect is the reactivity of microsolvated ions and the importance in atmospheric, organic and inorganic chemistry. We close by a discussion of the stability of molecular dianions, and how hydration affects the electronic binding energy. There is a vast literature on microsolvated ions, and in this review we are far from being comprehensive, rather we mainly bring examples of our own work.  相似文献   

6.
A thermospray ion source using corona discharge ionization was interfaced to a quadrupole ion trap mass spectrometer via a multi-element lens system. Ions were injected into the trap periodically where they were stabilized by collisions with helium bath gas. Mass spectra were recorded on the trapped ions using the mass-selective instability scan mode. Data are shown for a peptide and a nucleoside and the effects of some experimental variables on the spectra are explored.  相似文献   

7.
Biomass of a mercury-resistant strain Pseudomonas aeruginosa PU21 (Rip64) and hydrogen-form cation exchange resin (AG 50W-X8) were investigated for their ability to adsorb mercury. The maximum adsorption capacity was approximately 180 mg Hg/g dry cell in deionized water and 400 mg Hg/g dry cell in sodium phosphate solution at pH 7.4, higher than the maximum mercury uptake capacity in the cation exchange resin (100 mg Hg/g dry resin in deionized water). The mercury selectivity of the biomass over sodium ions was evaluated when 50 mM and 150 mM of Na(+) were present. Biosorption of mercury was also examined in sodium phosphate solution andphosphate-buffered saline solution (pH 7.0), containing 50mM and 150 mM of Na(+), respectively. It was found that the presence of Na(+) did not severely affect the biosorption of Hg(2+), indicating a high mercury selectivity ofthe biomass over sodium ions. In contrast, the mercury uptake by the ion exchange resin was strongly inhibited by high sodium concentrations. The mercury biosorption was most favorable in sodium phosphate solution (pH 7.4), with a more than twofold increase in the maximum mercury uptake capacity. The pH was found to affect the adsorption of Hg(2+)bythe biomass and the optimal pH value was approximately 7.4. The adsorption of mercury on the biomass and the ion exchange resin appeared to follow theLangmuir or Freundlich adsorption isotherms. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
Citrus rootstocks as well as lemon scions differ in their ability to restrict sodium and chloride ions and in their sensitivity to saline stress. To determine the behaviour of different rootstock-scion combinations, 3 lemon cultivars on 3 different rootstocks were grown in containers in a greenhouse and irrigated with 5, 25 and 50 m M NaCl. Growth of the plants and foliar contents of sodium and chloride as well as physiological parameters including transpiration rate, gas exchange, stomatal conductance and chlorophyll content were evaluated. Shoot length of the plants on sour orange and on C. volkameriana showed a greater reduction with salinity than those on C. macrophylla . Accumulation of salt in the leaves was also scion dependent, cv. 'Eureka' having higher concentrations of sodium and chloride than the others. Assimilation rate of CO2 and stomatal conductance were greatly reduced by salinity in the leaves of Verna and Eureka on sour orange. Gas exchange in the leaves was highly correlated with chloride and sodium contents in all lemon-rootstock combinations. C. macrophylla showed a higher resistance to salinity than C. volkameriana and sour orange. Inferences on the mechanisms of action of salt on lemon trees are discussed.  相似文献   

9.
In this article we present preliminary results of the application of potassium cationized field desorption mass spectrometry as an additional technique for the elucidation of structure and evaluation of purity of oligopeptides such as C-terminal penta- and hexapeptide analogs of substance P. In the resultant mass spectra both a protonated and a cationized molecular ion, MH+ and MK+ respectively, were observed. The m/z values of the two peaks were in agreement with the calculated molecular weights. The ratio between the relative abundancies of these ions (MH+/MK+) was found to be characteristic of the particular peptide and thus useful in the assessment of their purity. Among the 13 peptides studied, only two gave pyrolytic fragmentation leading to a more complex spectra.  相似文献   

10.
We report here the preliminary characterization of oligosaccharides present in an enzyme-treated industrial fermentation residue using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), electrospray ion trap mass spectrometry (ESI-ITMS), and gas chromatography mass spectrometry (GC-MS). After sample cleaning with carbon graphite columns, analysis of oligosaccharides present in the sample using MALDI-TOF-MS resulted in identification of molecular ions representing sodiated hexose and pentose oligo/polysaccharides. The GC-MS analyses revealed that the signals observed in the mass spectrum for hexose oligomers represent linear structures, whereas the pentose oligomers were identified as arabinoxylans with a (1-->4) linked Xylp backbone where the Xylp residues were either not substituted or singly substituted with Araf branching residues at positions C-2 or C-3 of the Xylp ring. Analyses by ESI-ITMS of the signals corresponding to arabinoxylan oligosaccharides with four and five monosaccharide residues showed the presence of isomeric structures differing in degree of branching and localization of the branched residue along the Xylp backbone.  相似文献   

11.
The synthesis of the cation-binding cyclic octapeptide, cyclo(Glu-Sar-Gly-(N-decyl)Gly)2 is reported. This peptide, containing two ionizable Glu carboxyl side chain protons per molecule, can form neutral cation complexes with divalent ions via protonmetal exchange. Solubilized in chloroform solution, the peptide has been found to extract calcium from an aqueous phase (pH 8.5, 100 mM Tris) generally on a 11 molar basis. By contrast, under comparable conditions but with other metal chlorides, the peptide does not extract magnesium, sodium, or potassium. That the extraction proceeds via proton-metal exchange was demonstrated by the absence of (radioactive) chloride ion from the organic phase. Parallel sets of experiments performed with the naturally-occurring ionophore A23187 reaffirmed that the latter substance extracts calcium and magnesium with nearly equal propensity.  相似文献   

12.
Protonated molecular peptide ions and their product ions generated by tandem mass spectrometry appear as isotopologue clusters due to the natural isotopic variations of carbon, hydrogen, nitrogen, oxygen, and sulfur. Quantitation of the isotopic composition of peptides can be employed in experiments involving isotope effects, isotope exchange, and isotopic labeling by chemical reactions and in studies of metabolism by stable isotope incorporation. Both ion trap and quadrupole-time of flight mass spectrometry are shown to be capable of determining the isotopic composition of peptide product ions obtained by tandem mass spectrometry with both precision and accuracy. Tandem mass spectra of clusters of isotopologue ions obtained in profile mode are fit by nonlinear least squares to a series of Gaussian peaks which quantify the Mn/M0 values which define the isotopologue distribution (ID). To determine the isotopic composition of product ions from their ID, a new algorithm that predicts the Mn/M0 ratios and obviates the need to determine the intensity of all of the ions of an ID is developed. Consequently a precise and accurate determination of the isotopic composition of a product ion may be obtained from only the initial values of the ID, however, the entire isotopologue cluster must be isolated prior to fragmentation. Following optimization of the molecular ion isolation width, fragmentation energy, and detector sensitivity, the presence of isotopic excess (2H, 13C, 15N, 18O) is readily determined within 1%. The ability to determine the isotopic composition of sequential product ions permits the isotopic composition of individual amino acid residues in the precursor ion to be determined.  相似文献   

13.
Cationization of bovine serum albumin (BSA) causes a profound increase in its immunogenicity. To establish if immunoregulatory properties of an immunosuppressive peptide are affected by cationization, a BSA peptide, a.a. 506-583, was cationized and tested for its immunogenic properties. A greatly reduced amount of cationized peptide compared to native peptide was required to stimulate BSA-primed T cells to proliferate in vitro. Mice primed with the cationized peptide administered with an adjuvant responded with a significantly greater anti-BSA response than mice immunized with the native form of the peptide. In the absence of an adjuvant i.v. or i.p. administration of the native peptide was immunosuppressive, while the cationized form was immunoenhancing. Both forms of the peptide stimulated in vivo induction of L3T4+ (CD4), and Lyt-2+ (CD8) T cells. Removal of Lyt-2+ T cells from lymph node cultures following immunization with the native peptide caused a significant increase in the proliferation of the remaining T cells. This increase was not observed when the mice were immunized with the cationized peptide. No major BSA B cell determinants were present within the peptide sequence. Mice immunized with the peptide exhibited a negligible anti-BSA antibody response compared to those immunized with the whole BSA molecule. Furthermore, the peptide did not inhibit anti-BSA antibody binding to BSA. We demonstrated that cationization modifies immunoregulatory properties of an immunosuppressive BSA-derived peptide.  相似文献   

14.
High-resolution Fourier transform ion cyclotron resonance mass spectrometry is employed to gain thorough kinetics and thermodynamics information on the reaction of free and ligated heme-type ions with selected ligands, with the aim of obtaining an insight into the coordination environment of the prosthetic group in a variety of biomolecular ions. Adopting a stepwise approach towards systems of increasing complexity, we examined the reactivity of free gaseous iron(III) protoporphyrin IX ions, Fe(III)-heme(+), of the charged species from microperoxidase-11 (MP11) (covalently peptide bound heme), and of the multiply charged ions from heme proteins, namely, cytochrome c (cyt c) and myoglobin (examples of noncovalently protein bound hemes). Among an array of test compounds allowed to react with Fe(III)-heme(+), OP(OMe)(3) and P(OMe)(3) proved to be similarly efficient ligands in the first addition step, yet displayed markedly distinct reactivity towards heme iron already engaged in axial coordination. The ease with which P(OMe)(3) acts as a second axial ligand is exploited to probe structural and conformational features of biomolecular ions. In this way, circumstantial evidence is gained of a folded conformation of +2 charge state ions from MP11 and an elongated one for the +3 charge state ions. Similarly, both the general reaction pattern and detailed kinetics and thermodynamics data point to a regiospecific addition reaction of P(OMe)(3) directed at the heme iron within multiply charged ions from cyt c. This unprecedented example of ion-molecule reaction which specifically involves a prosthetic group belonging to protein ions stands in contrast to the multiple, nonspecific interactions established by OP(OMe)(3) molecules with the protonated sites of multiply charged cyt c and apomyoglobin ions. This finding may develop and provide sensitive probes of the structure and bonding features of protein ions in the gas phase.  相似文献   

15.
A series of c- and z*-type product ions formed via gas-phase electron-transfer ion/ion reactions between protonated polypeptides with azobenzene radical anions are subjected to ion trap collision activation in a linear ion trap. Fragment ions including a-, b-, y-type and ammonia-loss ions are typically observed in collision induced dissociation (CID) of c ions, showing almost identical CID patterns as those of the C-terminal amidated peptides consisting of the same sequences. Collisional activation of z* species mainly gives rise to side-chain losses and peptide backbone cleavages resulting in a-, b-, c-, x-, y-, and z-type ions. Most of the fragmentation pathways of z* species upon ion trap CID can be accounted for by radical driven processes. The side-chain losses from z* species are different from the small losses observed from the charge-reduced peptide molecular species in electron-transfer dissociation (ETD), which indicates rearrangement of the radical species. Characteristic side-chain losses are observed for several amino acid residues, which are useful to predict their presence in peptide/protein ions. Furthermore, the unique side-chain losses from leucine and isoleucine residues allow facile distinction of these two isomeric residues.  相似文献   

16.
Vacuolar alternate class I MHC (MHC-I) Ag processing allows presentation of exogenous Ag by MHC-I molecules with binding of antigenic peptides to post-Golgi MHC-I molecules. We investigated the role of previously bound peptides and their dissociation in generating peptide-receptive MHC-I molecules. TAP1-knockout macrophages were incubated overnight with an initial exogenous peptide, producing a large cohort of peptide-K(b) complexes that could influence subsequent peptide dissociation/exchange. Initial incubation with FAPGNYPAL, KVVRFDKL, or RGYVYQGL enhanced rather than reduced subsequent binding and presentation of a readout peptide (SIINFEKL or FAPGNYPAL) to T cells. Thus, K(b) molecules may be stabilized by an initial (stabilizing) peptide, enhancing their ability to bind readout peptide and implicating peptide dissociation/exchange. In contrast, incubation with SIINFEKL as stabilizing peptide reduced presentation of readout peptide. SIINFEKL-K(b) complexes were more stable than other peptide-K(b) complexes, which may limit their contribution to peptide exchange. Stabilizing peptides (FAPGNYPAL, KVVRFDKL, or RGYVYQGL) enhanced alternate MHC-I processing of HB101.Crl-OVA (Escherichia coli expressing an OVA fusion protein), indicating that alternate MHC-I Ag processing involves peptide dissociation/exchange. Stabilizing peptide enhanced processing of HB101.Crl-OVA more than presentation of exogenous OVA peptide (SIINFEKL), suggesting that peptide dissociation/exchange may be enhanced in the acidic phagosomal processing environment. Furthermore, exposure of cells to acidic pH increased subsequent binding and presentation of readout peptide. Thus, peptide dissociation/exchange contributes to alternate MHC-I Ag processing and may be influenced by both stability of peptide-MHC-I complexes and pH.  相似文献   

17.
In our initial attempts to solubilize and purify a chemically synthesized 22-amino acid, membrane-spanning peptide, we encountered numerous difficulties. The peptide was not soluble in dilute acids, organic solvents, or chaotropic agents (+/- detergent) following standard HF cleavage protocols. The insolubility was a direct result of the formation of peptide-(peptide)n aggregates that occurred during the initial phase of isolation, i.e., during the HF cleavage. Eliminating the ether precipitation and subsequent washes did not decrease the degree of aggregation of the product. Inclusion of nonionic detergents in the HF-cleavage reactions displayed little ability in preventing aggregation. Cleavage in the presence of sodium dodecyl sulfate, however, dramatically reduced the degree of aggregation, even after washing with organic solvents. The cleaved peptide was purified to homogeneity using a detergent-based HPLC protocol. This column procedure also permits the quantitative exchange of the sodium dodecyl sulfate for n-octyl-beta-D-glucopyranoside. Combined use of the two protocols results in high-yield isolations for a class of peptides that is generally difficult to handle.  相似文献   

18.
The deuteron quadrupole splitting of lamellar mesophase samples containing lecithin and heavy water depends strongly on sample composition and temperature. Broadening effects due to cholesterol may arise from deuteron exchange between water and cholesterol. In samples composed of lecithin, cholesterol, alkali chloride and heavy water, or of lecithin, alkali cholate and heavy water, the degree of water orientation is lower with K+ ions than with the other alkali ions. 23Na NMR experiments show K+ ions to interact more strongly with the amphiphilic molecules than other alkali ions. A decrease in 23Na line width on cholesterol addition is ascribed to a partial release of sodium ions from the lamellae. The 23Na quadrupole splitting increases with increasing cholesterol content and this may be due to a reduced motional freedom of the polar end of the lecithin molecule.  相似文献   

19.
In this work we present a hybrid linear trap/Fourier transform ion cyclotron resonance (ICR) mass spectrometer to perform protein sequencing using the bottom-up approach. We demonstrate that incorporation of the linear trap greatly enhances the overall performance of the hybrid system for the study of complex peptide mixtures separated by fast high-performance liquid chromatography gradients. The ability to detect in the linear trap enables employment of automatic gain control to greatly reduce space charging in the ICR cell irregardless of ion flux. Resulting accurate mass measurements of 2 ppm or better using external calibration are achieved for the base peak as well as ions at 2% relative abundance. The linear trap is used to perform ion accumulation and activation prior to detection in the ICR cell which increases the scan rate. The increased duty cycle allows for data-dependent mass analysis of coeluting peptides to be acquired increasing protein sequence coverage without increasing the gradient length. In addition, the linear trap could be used as an ion detection device to perform simultaneous detection of tandem mass spectra with full scan mass spectral detection in the ICR cell resulting in the fastest scan cycles for performing bottom-up sequencing of protein digests. Comparisons of protein sequence coverage are presented for product ion detection in the linear trap and ICR cell.  相似文献   

20.
Prothymosin-alpha is a highly acidic protein consisting of 110 amino acids. The central segment of this protein, residues 51-89, is thought to be involved in metal binding which may be necessary for its physiological function. To carry out studies of this peptide, this central segment was synthesized in a linear fashion using Fmoc-based methods on rink amide MBHA resin. However, this peptide could not be purified with the typical straightforward approach of RP HPLC followed by negative mode electrospray ionization mass spectrometry (ESI-MS). This was attributed to the high proportion of acidic residues: 26 out of the 39 residues are aspartic and glutamic acids. The acidity of the peptide prevented retention on the RP HPLC column. Additionally, the ability of the highly negatively charged peptide to retain sodium ions prevented molecular weight determination with ESI-MS. A systematic approach to the purification of this highly acidic peptide was undertaken. Ultimately, strong anion exchange chromatography was used to purify the peptide. Extensive desalting using dialysis was required prior to ESI-MS, and the choice of the buffer proved to be critical. In the end, a purification method was devised that yielded a highly purified peptide and is readily compatible with analysis by ESI-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号