首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The GTP/GDP conformational switch of members of the rab family of ras-related GTP-ases control specific intracellular vesicle transport pathways. We report the crystallization of the late-endosomal rab protein rab7, in both GTP and GDP conformations. X-ray data from crystals of rab71–207GppNHp (i.e., intact rab7, without C-terminal bound lipid, complexed with a non-hydrolysable GTP analog), rab71–197GppNHp and rab71–197GDP were collected to 1.9Å (0°C), 1.76Å (100°K) and 1.75Å (100°K) respectively. Rab7-GDP crystals diffract to at least 1.35Å. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Rab GTPases: specifying and deciphering organelle identity and function   总被引:31,自引:0,他引:31  
Ten years ago, 20 Rab proteins had been identified as organelle-specific GTPases, and two were known to be essential for vesicle targeting in yeast. Today, more than 60 mammalian Rab proteins have been identified. While Rabs were always viewed as key regulatory factors, no one could have anticipated their diversity of functions and multitude of effectors. Rabs organize distinct protein scaffolds within a single organelle and act in a combinatorial manner with their effectors to regulate all stages of membrane traffic.  相似文献   

3.
Rabs are the largest family of small GTPases and are master regulators of membrane trafficking. Following activation by guanine‐nucleotide exchange factors (GEFs), each Rab binds a specific set of effector proteins that mediate the various downstream functions of that Rab. Then, with the help of GTPase‐activating proteins, the Rab converts GTP to GDP, terminating its function. There are over 60 Rabs in humans and only a subset has been analyzed in any detail. Recently, Rab35 has emerged as a key regulator of cargo recycling at endosomes, with an additional role in regulation of the actin cytoskeleton. Here, we will focus on the regulation of Rab35 activity by the connecdenn/DENND1 family of GEFs and the TBC1D10/EPI64 family of GTPase‐activating proteins. We will describe how analysis of these proteins, as well as a plethora of Rab35 effectors has provided insights into Rab35 function. Finally, we will describe how Rab35 provides a novel link between the Rab and Arf family of GTPases with implications for tumor formation and invasiveness .   相似文献   

4.
GTPases of the Rab5 and Rab7 families were shown to control vacuolar sorting but their specific subcellular localization is controversial in plants. Here, we show that both the canonical as well as the plant-specific Rab5 reside at the newly discovered 'late prevacuolar compartment' (LPVC) while Rab7 partitions to the vacuolar membrane when expressed at low levels. Higher expression levels of wild-type Rab5 GTPases but not Rab7 lead to dose-dependent inhibition of biosynthetic vacuolar transport. In the case of Ara6, this included aberrant co-localization with markers for earlier post-Golgi compartments including the trans-Golgi network. However, nucleotide-free mutants of all three GTPases (Rha1, Ara6 and Rab7) cause stronger dose-dependent inhibition of vacuolar sorting. In addition, nucleotide-free Rha1 led to a later maturation defect and co-localization of markers for the prevacuolar compartment (PVC) and the LPVC. The corresponding Rab7 mutant strongly inhibited vacuolar delivery without merging of PVC and LPVC markers. Evidence for functional differentiation of the Rab5 family members is underlined by the fact that mutant Rha1 expression can be suppressed by increasing wild-type Rha1 levels while mutant Ara6 specifically titrates the nucleotide exchange factor Vps9. A model describing the sequential action of Rab5 and Rab7 GTPases is presented in the light of the current observations.  相似文献   

5.
Thermally unfolded staphylococcal nuclease has been rapidly quenched to temperatures near 0 degree C and the refolding behavior examined using an NMR kinetic experiment. Unfolded protein, exhibiting random coil chemical shifts, persists following the quench and refolds in two distinct kinetic phases. A protein folding intermediate with a trans Lys 116-Pro 117 peptide bond is transiently overpopulated and relaxes to the predominantly cis native cis-trans equilibrium. The rate of trans-->cis isomerization in the native-like nuclease intermediate is approximately 100-fold faster than that observed in a Lys-Pro model peptide. The activation enthalpy of 20 kcal/mol observed for the nuclease Lys 116-Pro 117 peptide bond is comparable to that observed for other X-Pro isomerizations.  相似文献   

6.
7.
Among four subtypes of mammalian HCN channels, HCN1 has the fastest activation and deactivation kinetics while HCN4 shows the slowest. We previously showed that the activation kinetics are determined mainly by S1, S1-S2, and the S6-cyclic nucleotide binding domain. However, the effects of those regions on the deactivation kinetics were relatively small. Therefore, we investigated the structural basis for deactivation kinetics. Substitution of the core region (from S3 to S6) between HCN1 and HCN4 did not affect deactivation kinetics. This suggests that the peripheral regions (outside of S3 to S6) determine subtype-specific deactivation kinetics. Furthermore, we examined whether peripheral regions determined the deactivation kinetics across species by introducing the core region of DMIH (Drosophila homologue) into both HCN1 and HCN4. The DMIH core with HCN1 activated and deactivated more than threefold faster than that with HCN4. Taken together, the peripheral domains are diversified to create distinct kinetics.  相似文献   

8.
The human hemorphin LVV-H7 belongs to the class of micro-opiod receptor-binding peptides, which also exhibits significant affinity to insulin-regulated aminopeptidase (IRAP) thereby affecting IRAP inhibition. The inhibitory potency towards IRAP is of pharmaceutical interest for the treatment of Alzheimer's disease. Consecutive N-terminal cleavage of the first two amino acid residues of LVV-H7 affects a drastic increase of the binding affinity (V-H7) but ultimately leads to its complete abolition after cleavage of the next amino acid residue (H7). Therefore, we investigated LVV-H7 truncation by aminopeptidase M (AP-M) identified as a LVV-H7 degrading enzyme potentially regulating hemorphin activity towards IRAP in vivo. Using a selective quantitative multi-component capillary zone electrophoretic method (CZE-UV), we analyzed the AP-M-mediated subsequent proteolysis of the hemorphins LVV-H7 (L32-F41), VV-H7 (V33-F41), and V-H7 (V34-F41) in vitro. Incubations were carried out with synthetic hemorphins applied as single substrates or in combination. Maximum velocities (V(max)), catalytic constants (turnover numbers, kcat), and specific enzyme activities (EA) were calculated. L32 cleavage from LVV-H7 happens more than two-times faster (kcat: 140 min(-1) +/- 9%, EA: 1.0 U/mg +/- 9%) than V33 cleavage from VV-H7 (kcat: 61 min(-1) +/- 10%, EA: 0.43 U/mg +/- 10%) or V32 deletion from V-H7 (kcat: 62 min(-1) +/- 8%, EA: 0.46 U/mg +/- 8%). In contrast, we showed that H7 (Y35-F41) was neither degraded by porcine AP-M nor did it act as an inhibitor for this enzyme. Determined turnover numbers were in the same dimension as those reported for dynorphin degradation. This is the first time that AP-M-mediated truncation of natural underivatized LVV-H7 and its physiological metabolites was analyzed to determine kinetic parameters useful for understanding hemorphin processing and designing hemorphin-derived drug candidates.  相似文献   

9.
Ion transport across phospholipid vesicles was studied by 7Li and 23Na-NMR using an aqueous anionic paramagnetic shift reagent, dysprosium nitrilotriacetate [Dy(NTA)2]3−, mediated by ionophores, lasalocid A and A23187. The intra- and extracellular 7Li and 23Na-NMR signals were well separated (20 Hz) at mM concentration of the shift reagent. The observed data on the rate constant for lithium transport across DPPC vesicles at various concentrations of the ionophores indicated that lasalocid A is a more efficient carrier for lithium ion compared with the sodium ion transport by this ionophore, while A23187 was not specific to either of the ions (Li or Na). ©1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The kinetics of Ca2+-induced fusion of phosphatidylcholine-phosphatidic acid vesicles has been studied using the dependence of proton nuclear magnetic resonance linewidths on vesicle size. The linewidth of the lipid acyl chain methylene resonance been shown to be sensitive to changes in vesicle size but insensitive to vesicle aggregation. For vesicle systems with the same lipid composition, the linewidth increases in a linear fashion with vesicle radius over the range 125–300 Å. This dependence has been used to determine quantitatively fusion rates and the dependence of such rates on Ca2+ as well as an vesicle concentration. For vesicle concentrations in the range of 3 · 10?6–10?5 M and Ca2+ concentration at a level approaching 1 : 1 with respect to phosphatidic acid, the initial fusion rates have been found to be fast, with half-times of 1–10 min. An order of reaction of 2.7 with respect to vesicle concentration has been observed. Mechanisms of vesicle fusion are discussed in view of these observations.  相似文献   

11.
Enveloped viruses often enter cells via endocytosis; however, specific endocytic trafficking pathway(s) for many viruses have not been determined. Here we demonstrate, through the use of dominant-negative Rab5 and Rab7, that influenza virus (Influenza A/WSN/33 (H1N1) and A/X-31 (H3N2)) requires both early and late endosomes for entry and subsequent infection in HeLa cells. Time-course experiments, monitoring viral ribonucleoprotein colocalization with endosomal markers, indicated that influenza exhibits a conventional endocytic uptake pattern – reaching early endosomes after approximately 10 min, and late endosomes after 40 min. Detection with conformation-specific hemagglutinin antibodies indicated that hemagglutinin did not reach a fusion-competent form until the virus had trafficked beyond early endosomes. We also examined two other enveloped viruses that are also pH-dependent for entry – Semliki Forest virus and vesicular stomatitis virus. In contrast to influenza virus, infection with both Semliki Forest virus and vesicular stomatitis virus was inhibited only by the expression of dominant negative Rab5 and not by dominant negative Rab7, indicating an independence of late endosome function for infection by these viruses. As a whole, these data provide a definitive characterization of influenza virus endocytic trafficking and show differential requirements for endocytic trafficking between pH-dependent enveloped viruses .  相似文献   

12.
Denatured states of proteins, the starting points as well as the intermediates of folding in vivo, play important roles in biological function. In this context, we describe here urea unfolding and characterization of the denatured state of GTPase effector domain (GED) of dynamin created by 9.7 M urea. These are compared with similar data for guanidine induced denaturation reported earlier. The unfolding characteristics in the two cases, as measured by the optical probes, are significantly different, urea unfolding proceeding via an intermediate. The structural and motional characteristics, determined by NMR, of the two denatured states are also strikingly different. The urea-denatured state shows a combination of α- and β-preferences in contrast to the entirely β-preferences in the guanidine-denatured state. Higher 15N transverse relaxation rates suggest higher folding propensities in the urea-denatured state. The implications of these to GED folding are discussed.  相似文献   

13.
Rab7: Role of its protein interaction cascades in endo-lysosomal traffic   总被引:1,自引:0,他引:1  
Protein-protein interaction cascades are crucial for cellular signaling pathways and cell morphogenesis. Membrane traffic along the secretory and endocytic pathways is similarly governed by regulated protein-protein interactions of diverse machineries, which are inter-regulated, assembled and disassembled sequentially to drive membrane budding, vesicle transport, membrane fission and fusion. Rab7, the key regulator in endo-lysosomal trafficking investigated extensively in the past decades, is emerging to govern early-to-late endosomal maturation, microtubule minus-end as well as plus-end directed endosomal migration and positioning, and endosome-lysosome transport through different protein-protein interaction cascades. We summarize here the key protein interaction cascades of Rab7 by focusing on endo-lysosomal trafficking regulated by its interaction with HOPs, RILP, ORP1L, FYCO1 and Mon1/Sand1-CCZ1 complex.  相似文献   

14.
15.
Rab-interacting lysosomal protein (RILP) has been identified as an interacting partner of the small GTPases Rab7 and Rab34. Active Rab7 recruits RILP on the late endosomal/lysosomal membrane and RILP then functions as a Rab7 effector controlling transport to degradative compartments. Indeed, RILP induces recruitment of dynein-dynactin motor complexes to Rab7-containing late endosomes and lysosomes. Recently, Rab7 and RILP have been found to be key proteins also for the biogenesis of phagolysosomes. Therefore, RILP represents probably an important factor for all endocytic routes to lysosomes. In this study, we show, using the yeast two-hybrid system, that RILP is able to interact with itself. The data obtained with the two-hybrid system were confirmed using co-immunoprecipitation in HeLa cells. The data together indicate that RILP, as already demonstrated for several other Rab effector proteins, is capable of self-association, thus probably forming a homo-dimer.  相似文献   

16.
17.
Starting from tetrakis(trimethylsilyl)stannane, the tris(trimethylsilyl)stannyl alkali derivatives (Me3Si)3SnM, (M = Li, Na, K, Rb, Cs) were prepared in excellent yields. Reaction with MgBr2 · Et2O afforded bis[tris(trimethylsilyl)stannyl]magnesium. Reaction products were investigated by means of multinuclear NMR spectroscopy. At low temperatures, coupling of 7Li and 119Sn between [(Me3Si)3Sn] and [Li · 3THF]+ (337 Hz) or [Li · 12Cr4]+ (275 Hz), was observed. NMR chemical shifts and coupling constants of the stannyl anions exhibit a strong dependency on the nature of the cation, solvent system, concentration and temperature. In addition, the molecular structure of tris(trimethylsilyl)stannyl sodium · 15Cr5 was determined by X-ray crystallography. The [Na · 15Cr5]+ and [(Me3Si)3Sn] units are joined by a direct Sn-Na contact, 3.0775(18) Å in length.  相似文献   

18.
Multidimensional NMR spectroscopy is a well-established technique for the characterization of structure and fast-time-scale dynamics of highly populated ground states of biological macromolecules. The investigation of short-lived excited states that are important for molecular folding, misfolding and function, however, remains a challenge for modern biomolecular NMR techniques. Off-equilibrium real-time kinetic NMR methods allow direct observation of conformational or chemical changes by following peak positions and intensities in a series of spectra recorded during a kinetic event. Because standard multidimensional NMR methods required to yield sufficient atom-resolution are intrinsically time-consuming, many interesting phenomena are excluded from real-time NMR analysis. Recently, spatially encoded ultrafast 2D NMR techniques have been proposed that allow one to acquire a 2D NMR experiment within a single transient. In addition, when combined with the SOFAST technique, such ultrafast experiments can be repeated at high rates. One of the problems detected for such ultrafast protein NMR experiments is related to the heteronuclear decoupling during detection with interferences between the pulses and the oscillatory magnetic field gradients arising in this scheme. Here we present a method for improved ultrafast data acquisition yielding higher signal to noise and sharper lines in single-scan 2D NMR spectra. In combination with a fast-mixing device, the recording of 1H–15N correlation spectra with repetition rates of up to a few Hertz becomes feasible, enabling real-time studies of protein kinetics occurring on time scales down to a few seconds.  相似文献   

19.
Many eukaryotic proteins exert their physiological function in specific cellular compartments. Proteins of the inter-membrane space (IMS) of mitochondria, for example, are synthesized in the cytoplasm and translocate to the IMS, where they are further processed to their mature form. In-cell Nuclear Magnetic Resonance (NMR) has proven to be an ideal approach to investigate eukaryotic proteins at the atomic level, inside the cytoplasm. Here we show that proteins inside intact mitochondria isolated from human cells can be structurally characterized by NMR (in-mitochondria NMR). By this approach, we characterized the folding and maturation state of two human proteins in the IMS, SOD1 and Mia40. Both observed proteins were in the folded state. Mia40 was in the oxidized, functional state, while SOD1 disulfide bond formation was promoted by increasing the level of the SOD1 chaperone, CCS, in the IMS.  相似文献   

20.
Retromer, a peripheral membrane protein complex, plays an instrumental role in host of cellular processes by its ability to recycle receptors from endosomes to the trans‐Golgi network. It consists of two distinct sub‐complexes, a membrane recognizing, sorting nexins (SNX) complex and a cargo recognition, vacuolar protein sorting (Vps) complex. Small GTPase, Rab7 is known to recruit retromer on endosomal membrane via interactions with the Vps sub‐complex. The molecular mechanism underlying the recruitment process including the role of individual Vps proteins is yet to be deciphered. In this study, we developed a FRET‐based assay in HeLa cells that demonstrated the interaction of Rab7 with Vps35 and Vps26 in vivo. Furthermore, we showed that Rab7 recruits retromer to late endosomes via direct interactions with N‐terminal conserved regions in Vps35. However, the single point mutation, which disrupts the interaction between Vps35 and Vps26, perturbed the Rab7‐mediated recruitment of retromer in HeLa cells. Using biophysical measurements, we demonstrate that the association of Vps26 with Vps35 resulted in high affinity binding between the Vps sub‐complex and the activated Rab7 suggesting for a possible allosteric role of Vps26. Thus, this study provides molecular insights into the essential role of Vps26 and Vps35 in Rab7‐mediated recruitment of the core retromer complex.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号