首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enhanced proliferation of pulmonary arterial vascular smooth muscle cells (PASMCs) is a key pathological component of vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Mammalian targeting of rapamycin (mTOR) signaling has been shown to play a role in protein translation and participate in the progression of pulmonary hypertension. Eukaryotic translation initiation factor-2α (eIF2α) is a key factor in regulation of cell growth and cell cycle, but its role in mTOR signaling and PASMCs proliferation remains unknown. Pulmonary hypertension (PH) rat model was established by hypoxia. Rapamycin was used to treat rats as an mTOR inhibitor. Proliferation of primarily cultured rat PASMCs was induced by hypoxia, rapamycin and siRNA of mTOR and eIF2α were used in loss-of-function studies. The expression and activation of eIF2α, mTOR and c-myc were analyzed. Results showed that mTOR/eIF2α signaling was significantly activated in pulmonary arteries from hypoxia exposed rats and PASMCs cultured under hypoxia condition. Treatment with mTOR inhibitor for 21 days attenuated vascular remodeling, suppressed mTOR and eIF2α activation, inhibited c-myc expression in HPH rats. In hypoxia-induced PASMCs, rapamycin and knockdown of mTOR and eIF2α by siRNA significantly abolished proliferation and increased c-myc expression. These results suggest a critical role of the mTOR/eIF2αpathway in hypoxic vascular remodeling and PASMCs proliferation of HPH.  相似文献   

2.
3.
Signaling through the mammalian target of rapamycin (mTOR) in response to amino acid availability controls many cellular and developmental processes. mTOR is a master regulator of myogenic differentiation, but the pathways mediating amino acid signals in this process are not known. Here we examine the Rag GTPases and the class III phosphoinositide 3-kinase (PI3K) Vps34, two mediators of amino acid signals upstream of mTOR complex 1 (mTORC1) in cell growth regulation, for their potential involvement in myogenesis. We find that, although both Rag and Vps34 mediate amino acid activation of mTORC1 in C2C12 myoblasts, they have opposing functions in myogenic differentiation. Knockdown of RagA/B enhances, whereas overexpression of active RagB/C mutants impairs, differentiation, and this inhibitory function of Rag is mediated by mTORC1 suppression of the IRS1-PI3K-Akt pathway. On the other hand, Vps34 is required for myogenic differentiation. Amino acids activate a Vps34-phospholipase D1 (PLD1) pathway that controls the production of insulin-like growth factor II, an autocrine inducer of differentiation, through the Igf2 muscle enhancer. The product of PLD, phosphatidic acid, activates the enhancer in a rapamycin-sensitive but mTOR kinase–independent manner. Our results uncover amino acid–sensing mechanisms controlling the homeostasis of myogenesis and underline the versatility and context dependence of mTOR signaling.  相似文献   

4.
5.
Identification of cell signaling mechanisms mediating seizure-related neuronal death and epileptogenesis is important for developing more effective therapies for epilepsy. The mammalian target of rapamycin (mTOR) pathway has recently been implicated in regulating neuronal death and epileptogenesis in rodent models of epilepsy. In particular, kainate-induced status epilepticus causes abnormal activation of the mTOR pathway, and the mTOR inhibitor, rapamycin, can decrease the development of neuronal death and chronic seizures in the kainate model. Here, we discuss the significance of these findings and extend them further by identifying upstream signaling pathways through which kainate status epilepticus activates the mTOR pathway and by demonstrating limited situations where rapamycin may paradoxically increase mTOR activation and worsen neuronal death in the kainate model. Thus, the regulation of seizure-induced neuronal death and epileptogenesis by mTOR is complex and may have dual, opposing effects depending on the physiological and pathological context. Overall, these findings have important implications for designing potential neuroprotective and antiepileptogenic therapies that modulate the mTOR pathway.  相似文献   

6.
The mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation that is often deregulated in cancer. Inhibitors of mTOR, including rapamycin and its analogues, are being evaluated as antitumor agents. For their promise to be fulfilled, it is of paramount importance to identify the mechanisms of resistance and develop novel therapies to overcome it. Given the emerging role of microRNAs (miRNAs) in tumorigenesis, we hypothesized that miRNAs could play important roles in the response of tumors to mTOR inhibitors. Long-term rapamycin treatment showed extensive reprogramming of miRNA expression, characterized by up-regulation of miR-17–92 and related clusters and down-regulation of tumor suppressor miRNAs. Inhibition of members of the miR-17–92 clusters or delivery of tumor suppressor miRNAs restored sensitivity to rapamycin. This study identifies miRNAs as new downstream components of the mTOR-signaling pathway, which may determine the response of tumors to mTOR inhibitors. It also identifies potential markers to assess the efficacy of treatment and provides novel therapeutic targets to treat rapamycin-resistant tumors.  相似文献   

7.
Necroptosis is a newly described form of regulated necrosis that contributes to neuronal death in experimental models of stroke and brain trauma. Although much work has been done elucidating initiating mechanisms, signaling events governing necroptosis remain largely unexplored. Akt is known to inhibit apoptotic neuronal cell death. Mechanistic target of rapamycin (mTOR) is a downstream effector of Akt that controls protein synthesis. We previously reported that dual inhibition of Akt and mTOR reduced acute cell death and improved long term cognitive deficits after controlled-cortical impact in mice. These findings raised the possibility that Akt/mTOR might regulate necroptosis. To test this hypothesis, we induced necroptosis in the hippocampal neuronal cell line HT22 using concomitant treatment with tumor necrosis factor α (TNFα) and the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. TNFα/zVAD treatment induced cell death within 4 h. Cell death was preceded by RIPK1–RIPK3–pAkt assembly, and phosphorylation of Thr-308 and Thr473 of AKT and its direct substrate glycogen synthase kinase-3β, as well as mTOR and its direct substrate S6 ribosomal protein (S6), suggesting activation of Akt/mTOR pathways. Pretreatment with Akt inhibitor viii and rapamycin inhibited Akt and S6 phosphorylation events, mitochondrial reactive oxygen species production, and necroptosis by over 50% without affecting RIPK1–RIPK3 complex assembly. These data were confirmed using small inhibitory ribonucleic acid-mediated knockdown of AKT1/2 and mTOR. All of the aforementioned biochemical events were inhibited by necrostatin-1, including Akt and mTOR phosphorylation, generation of oxidative stress, and RIPK1–RIPK3–pAkt complex assembly. The data suggest a novel, heretofore unexpected role for Akt and mTOR downstream of RIPK1 activation in neuronal cell death.  相似文献   

8.
Vascular smooth muscle cells (VSMCs) switch from a contractile to a synthetic phenotype in human cardiovascular disease such as atherosclerosis and restenosis after angioplasty. VSMCs show reduced expression of contractile proteins and are capable of responding to mitogens by increasing expression of growth factor receptors. Fibroblast growth factor receptor-1 (FGFR1) signaling is one of several signaling pathways involved in this VSMC phenotypic switching. The aim of this study was to examine the signaling pathway downstream of FGFR1 in the regulation of SM marker gene expression. We found that FGFR1 activated Akt/mTOR pathway and that the mTOR inhibitor rapamycin partially reversed FGFR1-mediated downregulation of SM marker gene expression. Furthermore, we showed that mTOR forms a multi-protein complex with FGFR1 in VSMCs. These findings provide novel information for future development of therapeutic strategies for the treatment of human cardiovascular disease.  相似文献   

9.
The matrix protein fibronectin (FN) is a potent agoinst of vascular smooth muscle cell (SMC) migration. The role of rapamycin and the mammalian target of rapamycin (mTOR) in matrix protein-induced migration has not yet been defined. In these studies, we found that rapamycin (10 nM) markedly diminished chemotaxis of E47 cells (a cell line derived from human atherosclerotic plaques) and rat aortic SMCs toward FN as well as type I collagen and laminin; however, a period of preincubation >20 h was required. Subsequently, we showed that treatment with FN induced a rapid activation of mTOR as well as its downstream effector, S6 kinase (S6K). Moreover, FN-induced activation of both proteins was inhibited by preincubation with rapamycin for only 30 min. We then explored the upstream signaling pathway through which FN might mediate mTOR activation. A blocking antibody to alpha(v)beta(3) inhibited FN-induced mTOR/S6K activation as well as E47 cell chemotaxis, implicating alpha(v)beta(3) as the integrin receptor responsible for initiating FN-induced migration. Moreover, preincubation of E47 cells with wortmannin or LY-294002 blocked FN-induced mTOR/S6K activation, demonstrating that phosphatidylinositol 3-kinase (PI3K) plays a critical role in this rapamycin-sensitive signaling pathway. It has been previously suggested that rapamycin's effect on migration maybe related to enhancement of p27(kip1). However, treatment of E47 cells with rapamycin did not alter the level of p27(kip1) in the presence or absence of FN. Taken together, our data demonstrate that rapamycin inhibits FN-induced SMC migration through a pathway that involves at least alpha(v)beta(3)-integrin, PI3K, mTOR, and S6K.  相似文献   

10.
Sphingosine kinase 1 (SphK1) is a lipid kinase implicated in mitogenic signaling pathways in vascular smooth muscle cells. We demonstrate that human coronary artery smooth muscle (HCASM) cells require SphK1 for growth and that SphK1 mRNA and protein levels are elevated in PDGF stimulated HCASM cells. To determine the mechanism of PDGF-induced SphK1 expression, we used pharmacological inhibitors of the PI3K/AKT/mTOR signaling pathway. Wortmannin, SH-5, and rapamycin significantly blocked PDGF-stimulated induction of SphK1 mRNA and protein expression, indicating a regulatory role of the PI3K/AKT/mTOR pathway in SphK1 expression. To determine which isoform of AKT regulates SphK1 mRNA and protein levels, siRNAs specific for AKT1, AKT2, and AKT3 were used. We show that AKT2 siRNA significantly blocked PDGF-stimulated increases in SphK1 mRNA and protein expression levels as well as SphK1 enzymatic activity levels. In contrast, AKT1 or AKT3 siRNA did not have an effect. Together, these results demonstrate that the PI3K/AKT/mTOR signaling pathway is involved in regulation of SphK1, with AKT2 playing a key role in PDGF-induced SphK1 expression in HCASM cells.  相似文献   

11.

Background

The mTOR inhibitor rapamycin has anti-tumor activity across a variety of human cancers, including hepatocellular carcinoma. However, resistance to its growth inhibitory effects is common. We hypothesized that hepatic cell lines with varying rapamycin responsiveness would show common characteristics accounting for resistance to the drug.

Methodology/Principal Findings

We profiled a total of 13 cell lines for rapamycin-induced growth inhibition. The non-tumorigenic rat liver epithelial cell line WB-F344 was highly sensitive while the tumorigenic WB311 cell line, originally derived from the WB-F344 line, was highly resistant. The other 11 cell lines showed a wide range of sensitivities. Rapamycin induced inhibition of cyclin E–dependent kinase activity in some cell lines, but the ability to do so did not correlate with sensitivity. Inhibition of cyclin E–dependent kinase activity was related to incorporation of p27Kip1 into cyclin E–containing complexes in some but not all cell lines. Similarly, sensitivity of global protein synthesis to rapamycin did not correlate with its anti-proliferative effect. However, rapamycin potently inhibited phosphorylation of two key substrates, ribosomal protein S6 and 4E-BP1, in all cases, indicating that the locus of rapamycin resistance was downstream from inhibition of mTOR Complex 1. Microarray analysis did not disclose a unifying mechanism for rapamycin resistance, although the glycolytic pathway was downregulated in all four cell lines studied.

Conclusions/Significance

We conclude that the mechanisms of rapamycin resistance in hepatic cells involve alterations of signaling downstream from mTOR and that the mechanisms are highly heterogeneous, thus predicting that maintaining or promoting sensitivity will be highly challenging.  相似文献   

12.
Sphingosine kinase 1 (SphK1) is a lipid kinase implicated in mitogenic signaling pathways in vascular smooth muscle cells. We demonstrate that human coronary artery smooth muscle (HCASM) cells require SphK1 for growth and that SphK1 mRNA and protein levels are elevated in PDGF stimulated HCASM cells. To determine the mechanism of PDGF-induced SphK1 expression, we used pharmacological inhibitors of the PI3K/AKT/mTOR signaling pathway. Wortmannin, SH-5, and rapamycin significantly blocked PDGF-stimulated induction of SphK1 mRNA and protein expression, indicating a regulatory role of the PI3K/AKT/mTOR pathway in SphK1 expression. To determine which isoform of AKT regulates SphK1 mRNA and protein levels, siRNAs specific for AKT1, AKT2, and AKT3 were used. We show that AKT2 siRNA significantly blocked PDGF-stimulated increases in SphK1 mRNA and protein expression levels as well as SphK1 enzymatic activity levels. In contrast, AKT1 or AKT3 siRNA did not have an effect. Together, these results demonstrate that the PI3K/AKT/mTOR signaling pathway is involved in regulation of SphK1, with AKT2 playing a key role in PDGF-induced SphK1 expression in HCASM cells.  相似文献   

13.
mTOR – the mammalian/mechanistic target of rapamycin – has been implicated as a key signaling node for promoting survival of cancer cells. However, clinical trials that have targeted mTOR with rapamycin or rapamycin analogs have had minimal impact. In spite of the high specificity of rapamycin for mTOR, the doses needed to suppress key mTOR substrates have proved toxic. We report here that rapamycin when combined with AICAR – a compound that activates AMP-activated protein kinase makes rapamycin cytotoxic rather than cytostatic at doses that are tolerated clinically. AICAR by itself is able to suppress mTOR complex 1 (mTORC1), but also stimulates a feedback activation of mTORC2, which activates the survival kinase Akt. However, AICAR also suppresses production of phosphatidic acid (PA), which interacts with mTOR in a manner that is competitive with rapamycin. The reduced level of PA sensitizes mTORC2 to rapamycin at tolerable nano-molar doses leading reduced Akt phosphorylation and apoptosis. This study reveals how the use of AICAR enhances the efficacy of rapamycin such that rapamycin at low nano-molar doses can suppress mTORC2 and induce apoptosis in human cancer cells at doses that are clinically tolerable.  相似文献   

14.
Expression of kinesin family member 18B (KIF18B), an ATPase with key roles in cell division, is deregulated in many cancers, but its involvement in prostate cancer (PCa) is unclear. Here, we investigated the expression and function of KIF18B in human PCa specimens and cell lines using bioinformatics analyses, immunohistochemical and immunofluorescence microscopy, and RT-qPCR and western blot analyses. KIF18B was overexpressed in PCa specimens compared with paracancerous tissues and was associated with poorer disease-free survival. In vitro, KIF18B knockdown in PCa cell lines promoted cell proliferation, migration, and invasion, and inhibited cell apoptosis, while KIF18B overexpression had the opposite effects. In a mouse xenograft model, KIF18B overexpression accelerated and promoted the growth of PCa tumors. Bioinformatics analysis of control and KIF18B-overexpressing PCa cells showed that genes involved in the PI3K–AKT–mTOR signaling pathway were significantly enriched among the differentially expressed genes. Consistent with this observation, we found that KIF18B overexpression activates the PI3K–AKT–mTOR signaling pathway in PCa cells both in vitro and in vivo. Collectively, our results suggest that KIF18B plays a crucial role in PCa via activation of the PI3K–AKT–mTOR signaling pathway, and raise the possibility that KIF18B could have utility as a novel biomarker for PCa.Subject terms: Prostate cancer, Cell invasion  相似文献   

15.
The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization) and denervation (sciatic nerve resection) atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK) rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy.KEY WORDS: Skeletal muscle, Muscle atrophy pathophysiology, TGF-β signaling, Myostatin, Denervation atrophy  相似文献   

16.
The mammalian target of rapamycin (mTOR) signaling pathway is aberrantly activated in polycystic kidney disease (PKD). Emerging evidence suggests that phospholipase D (PLD) and its product phosphatidic acid (PA) regulate mTOR activity. In this study, we assessed in vitro the regulatory function of PLD and PA on the mTOR signaling pathway in PKD. We found that the basal level of PLD activity was elevated in PKD cells. Targeting PLD by small molecule inhibitors reduced cell proliferation and blocked mTOR signaling, whereas exogenous PA stimulated mTOR signaling and abolished the inhibitory effect of PLD on PKD cell proliferation. We also show that blocking PLD activity enhanced the sensitivity of PKD cells to rapamycin and that combining PLD inhibitors and rapamycin synergistically inhibited PKD cell proliferation. Furthermore, we demonstrate that targeting mTOR did not induce autophagy, whereas targeting PLD induced autophagosome formation. Taken together, our findings suggest that deregulated mTOR pathway activation is mediated partly by increased PLD signaling in PKD cells. Targeting PLD isoforms with pharmacological inhibitors may represent a new therapeutic strategy in PKD.  相似文献   

17.
The platelet-derived growth factor β receptor (PDGFRβ) is known to activate many molecules involved in signal transduction and has been a paradigm for receptor tyrosine kinase signaling for many years. We have sought to determine the role of individual signaling components downstream of this receptor in vivo by analyzing an allelic series of tyrosine–phenylalanine mutations that prevent binding of specific signal transduction components. Here we show that the incidence of vascular smooth muscle cells/pericytes (v/p), a PDGFRβ-dependent cell type, can be correlated to the amount of receptor expressed and the number of activated signal transduction pathways. A decrease in either receptor expression levels or disruption of multiple downstream signaling pathways lead to a significant reduction in v/p. Conversely, loss of RasGAP binding leads to an increase in this same cell population, implicating a potential role for this effector in attenuating the PDGFRβ signal. The combined in vivo and biochemical data suggest that the summation of pathways associated with the PDGFRβ signal transduction determines the expansion of developing v/p cells.  相似文献   

18.
The mammalian target of rapamycin (mTOR) regulates cell growth and survival by integrating nutrient and hormonal signals. These signaling functions are distributed between at least two distinct mTOR protein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to the selective inhibitor rapamycin and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)→Akt→mTOR pathway. Activated mTORC1 kinase up-regulates protein synthesis by phosphorylating key regulators of mRNA translation. By contrast, mTORC2 is resistant to rapamycin. Genetic studies have suggested that mTORC2 may phosphorylate Akt at S473, one of two phosphorylation sites required for Akt activation; this has been controversial, in part because RNA interference and gene knockouts produce distinct Akt phospho-isoforms. The central role of mTOR in controlling key cellular growth and survival pathways has sparked interest in discovering mTOR inhibitors that bind to the ATP site and therefore target both mTORC2 and mTORC1. We investigated mTOR signaling in cells and animals with two novel and specific mTOR kinase domain inhibitors (TORKinibs). Unlike rapamycin, these TORKinibs (PP242 and PP30) inhibit mTORC2, and we use them to show that pharmacological inhibition of mTOR blocks the phosphorylation of Akt at S473 and prevents its full activation. Furthermore, we show that TORKinibs inhibit proliferation of primary cells more completely than rapamycin. Surprisingly, we find that mTORC2 is not the basis for this enhanced activity, and we show that the TORKinib PP242 is a more effective mTORC1 inhibitor than rapamycin. Importantly, at the molecular level, PP242 inhibits cap-dependent translation under conditions in which rapamycin has no effect. Our findings identify new functional features of mTORC1 that are resistant to rapamycin but are effectively targeted by TORKinibs. These potent new pharmacological agents complement rapamycin in the study of mTOR and its role in normal physiology and human disease.  相似文献   

19.
We analyzed the PI3K-AKT signaling cascade in a cohort of sarcomas and found a marked induction of insulin receptor substrate-2 (IRS2) and phosphorylated AKT and a concomitant upregulation of downstream effectors in most leiomyosarcomas. To determine the role of aberrant PI3K-AKT signaling in leiomyosarcoma pathogenesis, we genetically inactivated Pten in the smooth muscle cell lineage by cross-breeding Pten(loxP/loxP) mice with Tagln-cre mice. Mice carrying homozygous deletion of Pten alleles developed widespread smooth muscle cell hyperplasia and abdominal leiomyosarcomas, with a very rapid onset and elevated incidence (approximately 80%) compared to other animal models. Constitutive mTOR activation was restricted to the leiomyosarcomas, revealing the requirement for additional molecular events besides Pten loss. The rapamycin derivative everolimus substantially decelerated tumor growth on Tagln-cre/Pten(loxP/loxP) mice and prolonged their lifespan. Our data show a new and critical role for the AKT-mTOR pathway in smooth muscle transformation and leiomyosarcoma genesis, and support treatment of selected sarcomas by the targeting of this pathway with new compounds or combinations of these with conventional chemotherapy agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号