共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
E. Blanc V. Fremont P. Sizun S. Meunier J. Van Rietschoten A. Thevand J.-M. Bernassau H. Darbon 《Proteins》1996,24(3):359-369
The venom of the North African scorpion Androctonus mauretanicus mauretanicus possesses numerous highly active neurotoxins that specifically bind to various ion channels. One of these, P05, has been found to bind specifically to calcium-activated potassium channels and also to compete with apamin, a toxin extracted from bee venom. Besides the highly potent ones, several of these peptides (including that of P01) have been purified and been found to possess only a very weak, although significant, activity in competition with apamin. The amino acid sequence of P01 shows that it is shorter than P05 by two residues. This deletion occurs within an α-helix stretch (residues 5–12). This α-helix has been shown to be involved in the interaction of P05 with its receptor via two arginine residues. These two arginines are absent in the P01 sequence. Furthermore, a proline residue in position 7 of the P01 sequence may act as an α-helix breaker. We have determined the solution structure of P01 by conventional two-dimensional 1H nuclear magnetic resonance and show that 1) the proline residue does not disturb the α-helix running from residues 5 to 12; 2) the two arginines are topologically replaced by two acidic residues, which explains the drop in activity; 3) the residual binding activity may be due to the histidine residue in position 9; and 4) the overall secondary structure is conserved, i.e., an α-helix running from residues 5 to 12, two antiparallel stretches of β-sheet (residues 15–20 and 23–27) connected by a type I′ β-turn, and three disulfide bridges connecting the α-helix to the β-sheet. 相似文献
3.
蝎长链神经毒素研究进展 总被引:4,自引:0,他引:4
蝎长链神经毒素由60-76个残基组成,含4对二硫键,主要作用于可兴奋细胞的Na^ 通道,这些毒素的作用方式和选择性各有不同,其中功能相似的毒素,其蛋白质及基因序列也都很相似,所有这些长链毒素的三结构地都采用相似的折叠方式,对这些毒素结构与功能研究的深入,将有利于我们对蝎毒素作用机理的了解,并有可能使其更具有生物防虫害或疾病治疗等实际意义。 相似文献
4.
A natural K+ channel blocker, BmKK2 (a member of scorpion toxin subfamily alpha-KTx 14), which is composed of 31 amino acid residues and purified from the venom of the Chinese scorpion Buthus martensi Karsch, was characterized using whole-cell patch-clamp recording in rat hippocampal neurons. The three dimensional structure of BmKK2 was determined with two-dimensional NMR spectroscopy and molecular modelling techniques. In solution this toxin adopted a common alpha/beta-motif, but showed distinct local conformation in the loop between alpha-helix and beta-sheet in comparison with typical short-chain scorpion toxins (e.g., CTX and NTX). Also, the alpha helix is shorter and the beta-sheet element is smaller (each strand consisted only two residues). The unusual structural feature of BmKK2 was attributed to the shorter loop between the alpha-helix and beta-sheet and the presence of two consecutive Pro residues at position 21 and 22 in the loop. Moreover, two models of BmKK2/hKv1.3 channel and BmKK2/rSK2 channel complexes were simulated with docking calculations. The results demonstrated the existence of a alpha-mode binding between the toxin and the channels. The model of BmKK2/rSK2 channel complex exhibited favorable contacts both in electrostatic and hydrophobic, including a network of five hydrogen bonds and bigger interface containing seven pairs of inter-residue interactions. In contrast, the model of BmKK2/hKv1.3 channel complex, containing only three pairs of inter-residue interactions, exhibited poor contacts and smaller interface. The results well explained its lower activity towards Kv channel, and predicted that it may prefer a type of SK channel with a narrower entryway as its specific receptor. 相似文献
5.
蝎短肽链神经毒素研究进展 总被引:2,自引:0,他引:2
对蝎短肽链神经毒素结构与功能研究进展作了简要的论述,蝎毒中富含短肽链神经毒素,至今已经分离纯化到60多种,它们的大小介于28-41个氨基酸残基之间,分子中含有3-4对二硫键,空间结构紧密,这些毒素可以特异性地与K+,Cl-和Ca2 等离子通道相结合,由于它们对离子通道的选择性,这些毒素在药理学和神经生物学中已经得到了广泛的应用。 相似文献
6.
Dalia Gordon 《Invertebrate neuroscience : IN》1997,3(2-3):103-116
Voltage-sensitive sodium channels are responsible for the generation of electrical signals in most excitable tissues and serve as specific targets for many neurotoxins. At least seven distinct classes of neurotoxins have been designated on the basis of physiological activity and competitive binding studies. Although the characterization of the neurotoxin receptor sites was predominantly performed using vertebrate excitable preparations, insect neuronal membranes were shown to possess similar receptor sites. We have demonstrated that the two mutually competing antiinsect excitatory and depressant scorpion toxins, previously suggested to occupy the same receptor site, bind to two distinct receptors on insect sodium channels. The latter provides a new approach to their combined use in insect control strategy. Although the sodium channel receptor sites are topologically separated, there are strong allosteric interactions among them. We have shown that the lipid-soluble sodium channel activators, veratridine and brevetoxin, reveal divergent allosteric modulation on scorpion α-toxins binding at homologous receptor sites on mammalian and insect sodium channels. The differences suggest a functionally important structural distinction between these channel subtypes. The differential allosteric modulation may provide a new approach to increase selective activity of pesticides on target organisms by simultaneous application of allosterically interacting drugs, designed on the basis of the selective toxins. Thus, a comparative study of neurotoxin receptor sites on mammalian and invertebrate sodium channels may elucidate the structural features involved in the binding and activity of the various neurotoxins, and may offer new targets and approaches to the development of highly selective pesticides. 相似文献
7.
Frénal K Xu CQ Wolff N Wecker K Gurrola GB Zhu SY Chi CW Possani LD Tytgat J Delepierre M 《Proteins》2004,56(2):367-375
The gamma-KTx-type scorpion toxins specific for K+ channels were found to interact with ERG channels on the turret region, while alpha-KTx3.2 Agitoxin-2 binds to the pore region of the Shaker K+ channel, and alpha-KTx5.3 BmP05 binds to the intermediate region of the small-conductance calcium-activated K-channel (SK(Ca)). In order to explore the critical residues for gamma-KTx binding, we determined the NMR structure of native gamma-KTx1.1 (CnErg1), a 42 amino acid residues scorpion toxin isolated from the venom of the Mexican scorpion Centruro?des noxius Hoffmann, and we used computational evolutionary trace (ET) analysis to predict possible structural and functional features of interacting surfaces. The 1H-NMR three-dimensional solution structure of native ergtoxin (CnErg1) was solved using a total of 452 distance constraints, 13 3J(NH-Halpha) and 10 hydrogen bonds. The structure is characterized by 2 segments of alpha-helices and a triple-stranded antiparallel beta-sheet stabilized by 4 disulfide bridges. The ET and structural analysis provided indication of the presence of two important amino acid residue clusters, one hydrophobic and the other hydrophilic, that should be involved in the surface contact between the toxin and the channel. Some features of the proposed interacting surface are discussed. 相似文献
8.
A toxin from a marine gastropod's defensive mucus, a disulfide-linked dimer of 6-bromo-2-mercaptotryptamine (BrMT), was found to inhibit voltage-gated potassium channels by a novel mechanism. Voltage-clamp experiments with Shaker K channels reveal that externally applied BrMT slows channel opening but not closing. BrMT slows K channel activation in a graded fashion: channels activate progressively slower as the concentration of BrMT is increased. Analysis of single-channel activity indicates that once a channel opens, the unitary conductance and bursting behavior are essentially normal in BrMT. Paralleling its effects against channel opening, BrMT greatly slows the kinetics of ON, but not OFF, gating currents. BrMT was found to slow early activation transitions but not the final opening transition of the Shaker ILT mutant, and can be used to pharmacologically distinguish early from late gating steps. This novel toxin thus inhibits activation of Shaker K channels by specifically slowing early movement of their voltage sensors, thereby hindering channel opening. A model of BrMT action is developed that suggests BrMT rapidly binds to and stabilizes resting channel conformations. 相似文献
9.
Pimentel C M'Barek S Visan V Grissmer S Sampieri F Sabatier JM Darbon H Fajloun Z 《Protein science : a publication of the Protein Society》2008,17(1):107-118
Agitoxin 2 (AgTx2) is a 38-residue scorpion toxin, cross-linked by three disulfide bridges, which acts on voltage-gated K(+) (Kv) channels. Maurotoxin (MTX) is a 34-residue scorpion toxin with an uncommon four-disulfide bridge reticulation, acting on both Ca(2+)-activated and Kv channels. A 39-mer chimeric peptide, named AgTx2-MTX, was designed from the sequence of the two toxins and chemically synthesized. It encompasses residues 1-5 of AgTx2, followed by the complete sequence of MTX. As established by enzyme cleavage, the new AgTx2-MTX molecule displays half-cystine pairings of the type C1-C5, C2-C6, C3-C7, and C4-C8, which is different from that of MTX. The 3D structure of AgTx2-MTX solved by (1)H-NMR, revealed both alpha-helical and beta-sheet structures, consistent with a common alpha/beta scaffold of scorpion toxins. Pharmacological assays of AgTx2-MTX revealed that this new molecule is more potent than both original toxins in blocking rat Kv1.2 channel. Docking simulations, performed with the 3D structure of AgTx2-MTX, confirmed this result and demonstrated the participation of the N-terminal domain of AgTx2 in its increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicated that replacement of the N-terminal domain of MTX by the one of AgTx2 in the AgTx2-MTX chimera results in a reorganization of the disulfide bridge arrangement and an increase of affinity to the Kv1.2 channel. 相似文献
10.
The crystal structure of an acidic neurotoxin, BmK M8, from Chinese scorpion Buthus martensii Karsch was determined at 0.25 nm resolution. The X-ray diffraction data of BmK M8 crystals at 0.25nm resolution were collected on a Siemens area detector. Using molecular replacement method with a basic scorpion toxin AaH II in a search model, the cross-rotation function, PC-refinement and translation function were calculated by X-PLOR program package. The correct orientation and position of BmK M8 molecule in crystal were determined in a resolution range of 1.5 - 0.35nm, The oystallographic refinement was further performed by stereo-chemical restrict least-square technique, followed by simulated annealing, slow-cooling protocols. The final crystallographic R-factor at 0.8-0.25 nm is 0.171. The standard deviations of bond length and bond angle from ideality are 0.001 7nm and 2.24° , respectively. The final model of BmK M8 structure is composed of a dense core of secondary structure elements by a stretch of α- 相似文献
11.
HE Xiaolin LIU Xinqi ZENG Zonghao LI Hongmin WANG Miao ZHANG Ying WANG Dacheng 《中国科学C辑(英文版)》2000,43(1):39-46
BmK M4 is a neutral neurotoxin in the BmK toxin series.It is medially toxic and belongs to group III α-toxins.The purified sample was crystallized in rhombic space group P61.Using an X-ray diffraction technique,the crystal structure of BmK M4 was revealed by molecular replacement at 0.20 nm resolution.The model was refined.The final crystallographic R factor was 0.142 and the free R factor was 0.173.The root mean square deviation is 0.001 5 nm for the bond length and 1.753°for the bond angles.64 water molecules were added to the asymmetric unit.The refined structure showed an unusual non-prolyl cis peptide bond at residue 10.The structure was compared with group II α-toxin BmK M8 (an acidic,weak toxin).The potential structural implications of the cis peptide bond were discussed. 相似文献
12.
13.
BmK M4 is a neutral neurotoxin in the BmK toxin series. It is medially toxic and belongs to group III cc-toxins. The purified sample was crystallized in rhombic space group P6 Using an X-ray diffraction technique, the crystal structure of BmK M4 was revealed by molecular replacement at 0.20 nm resolution. The model was refined. The final crystallographic R factor was 0.142 and the free R factor was 0.173. The root mean square deviation is 0.001 5 nm for the bond length and 1.753° for the bond angles. 64 water molecules were added to the asymmetric unit. The refined structure showed an unusual non-prolyl cis peptide bond at residue 10. The structure was compared with group II a-toxin BmK M8 (an acidic, weak toxin). The potential structural implications of the cis peptide bond were discussed. 相似文献
14.
A. M. Krezel C. Kasibhatla P. Hidalgo R. MacKinnon G. Wagner 《Protein science : a publication of the Protein Society》1995,4(8):1478-1489
The structure of the potassium channel blocker agitoxin 2 was solved by solution NMR methods. The structure consists of a triple-stranded antiparallel beta-sheet and a single helix covering one face of the beta-sheet. The cysteine side chains connecting the beta-sheet and the helix form the core of the molecule. One edge of the beta-sheet and the adjacent face of the helix form the interface with the Shaker K+ channel. The fold of agitoxin is homologous to the previously determined folds of scorpion venom toxins. However, agitoxin 2 differs significantly from the other channel blockers in the specificity of its interactions. This study was thus focused on a precise characterization of the surface residues at the face of the protein interacting with the Shaker K+ channel. The rigid toxin molecule can be used to estimate dimensions of the potassium channel. Surface-exposed residues, Arg24, Lys27, and Arg31 of the beta-sheet, have been identified from mutagenesis studies as functionally important for blocking the Shaker K+ channel. The sequential and spatial locations of Arg24 and Arg31 are not conserved among the homologous toxins. Knowledge on the details of the channel-binding sites of agitoxin 2 formed a basis for site-directed mutagenesis studies of the toxin and the K+ channel sequences. Observed interactions between mutated toxin and channel are being used to elucidate the channel structure and mechanisms of channel-toxin interactions. 相似文献
15.
Defensins are phylogenetically ancient antibacterial polypeptides found in plants and animals. Isolation of the cDNA and genomic sequences encoding the scorpion (Leiurus quinquestriatus hebraeus) defensin revealed similarity to scorpion neurotoxins in gene organization (two exons and a phase I intron) and intron characteristics (conserved acceptor, donor and putative branch sites). This commonality, alongside a similar core structure, protein sequence and bioactivity suggest that arthropod defensins and scorpion neurotoxins share a common ancestor. Interestingly, phylogenetic analysis of defensins and scorpion neurotoxins illuminates for the first time a putative evolutionary trajectory for scorpion sodium and potassium channel neurotoxins. 相似文献
16.
Savarin P Romi-Lebrun R Zinn-Justin S Lebrun B Nakajima T Gilquin B Menez A 《Protein science : a publication of the Protein Society》1999,8(12):2672-2685
We have determined the three-dimensional structure of the potassium channel inhibitor HsTX1, using nuclear magnetic resonance and molecular modeling. This protein belongs to the scorpion short toxin family, which essentially contains potassium channel blockers of 29 to 39 amino acids and three disulfide bridges. It is highly active on voltage-gated Kv1.3 potassium channels. Furthermore, it has the particularity to possess a fourth disulfide bridge. We show that HsTX1 has a fold similar to that of the three-disulfide-bridged toxins and conserves the hydrophobic core found in the scorpion short toxins. Thus, the fourth bridge has no influence on the global conformation of HsTX1. Most residues spatially analogous to those interacting with voltage-gated potassium channels in the three-disulfide-bridged toxins are conserved in HsTX1. Thus, we propose that Tyr21, Lys23, Met25, and Asn26 are involved in the biological activity of HsTX1. As an additional positively charged residue is always spatially close to the aromatic residue in toxins blocking the voltage-gated potassium channels, and as previous mutagenesis experiments have shown the critical role played by the C-terminus in HsTX1, we suggest that Arg33 is also important for the activity of the four disulfide-bridged toxin. Docking calculations confirm that, if Lys23 and Met25 interact with the GYGDMH motif of Kv1.3, Arg33 can contact Asp386 and, thus, play the role of the additional positively charged residue of the toxin functional site. This original configuration of the binding site of HsTX1 for Kv1.3, if confirmed experimentally, offers new structural possibilities for the construction of a molecule blocking the voltage-gated potassium channels. 相似文献
17.
Carlos Bloch Sunil U. Patel Franck Baud Marketa J.J.M. Zvelebil Mark D. Carr Peter J. Sadler Janet M. Thornton 《Proteins》1998,32(3):334-349
The three-dimensional structure of the Sorghum bicolor seed protein γ-thionin SIα1 has been determined by 2D 1H nuclear magnetic resonance (NMR) spectroscopy. The secondary structure of this 47-residue antifungal protein with four disulphide bridges consists of a three-stranded antiparallel sheet and one helix. The helix is tethered to the sheet by two disulphide bridges which link two successive turns of the helix to alternate residues i, i + 2 in one strand. Possible binding sites for antifungal activity are discussed. The same fold has been observed previously in several scorpion toxins. Proteins 32:334–349, 1998. © 1998 Wiley-Liss, Inc. 相似文献
18.
Chagot B Escoubas P Villegas E Bernard C Ferrat G Corzo G Lazdunski M Darbon H 《Protein science : a publication of the Protein Society》2004,13(5):1197-1208
Animal toxins block voltage-dependent potassium channels (Kv) either by occluding the conduction pore (pore blockers) or by modifying the channel gating properties (gating modifiers). Gating modifiers of Kv channels bind to four equivalent extracellular sites near the S3 and S4 segments, close to the voltage sensor. Phrixotoxins are gating modifiers that bind preferentially to the closed state of the channel and fold into the Inhibitory Cystine Knot structural motif. We have solved the solution structure of Phrixotoxin 1, a gating modifier of Kv4 potassium channels. Analysis of the molecular surface and the electrostatic anisotropy of Phrixotoxin 1 and of other toxins acting on voltage-dependent potassium channels allowed us to propose a toxin interacting surface that encompasses both the surface from which the dipole moment emerges and a neighboring hydrophobic surface rich in aromatic residues. 相似文献
19.
20.
Qingxin Li Ying Lei Wong Hui Qi Ng Shovanlal Gayen CongBao Kang 《Journal of peptide science》2014,20(12):935-944
The hERG (human ether‐a‐go‐go related gene) potassium channel is a voltage‐gated potassium channel containing an N‐terminal domain, a voltage‐sensor domain, a pore domain and a C‐terminal domain. The transmembrane segment 4 (S4) is important for sensing changes of membrane potentials through positively charge residues. A construct containing partial S2–S3 linker, S3, S4 and the S4–S5 linker of the hERG channel was purified into detergent micelles. This construct exhibits good quality NMR spectrum when it was purified in lyso‐myristoyl phosphatidylglycerol (LMPG) micelles. Structural study showed that S3 contains two short helices with a negatively charged surface. The S4 and S4–S5 linker adopt helical structures. The six positively charged residues in S4 localize at different sides, suggesting that they may have different functions in channel gating. Relaxation studies indicated that S3 is more flexible than S4. The boundaries of S3–S4 and S4–S4–S5 linker were identified. Our results provided structural information of the S3 and S4, which will be helpful to understand their roles in channel gating. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd. 相似文献