首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cordon-bleu is an actin nucleation factor and controls neuronal morphology   总被引:2,自引:0,他引:2  
Despite the wealth of different actin structures formed, only two actin nucleation factors are well established in vertebrates: the Arp2/3 complex and formins. Here, we describe a further nucleator, cordon-bleu (Cobl). Cobl is a brain-enriched protein using three Wiskott-Aldrich syndrome protein homology 2 (WH2) domains for actin binding. Cobl promotes nonbundled, unbranched filaments. Filament formation relies on barbed-end growth and requires all three Cobl WH2 domains and the extended linker L2. We suggest that the nucleation power of Cobl is based on the assembly of three actin monomers in cross-filament orientation. Cobl localizes to sites of high actin dynamics and modulates cell morphology. In neurons, induction of both neurites and neurite branching is dramatically increased by Cobl expression-effects that critically depend on Cobl's actin nucleation ability. Correspondingly, Cobl depletion results in decreased dendritic arborization. Thus, Cobl is an actin nucleator controlling neuronal morphology and development.  相似文献   

2.
Actin nucleation triggers the formation of new actin filaments and has the power to shape cells but requires tight control in order to bring about proper morphologies. The regulation of the members of the novel class of WASP Homology 2 (WH2) domain-based actin nucleators, however, thus far has largely remained elusive. Our study reveals signal cascades and mechanisms regulating Cordon-Bleu (Cobl). Cobl plays some, albeit not fully understood, role in early arborization of neurons and nucleates actin by a mechanism that requires a combination of all three of its actin monomer–binding WH2 domains. Our experiments reveal that Cobl is regulated by Ca2+ and multiple, direct associations of the Ca2+ sensor Calmodulin (CaM). Overexpression analyses and rescue experiments of Cobl loss-of-function phenotypes with Cobl mutants in primary neurons and in tissue slices demonstrated the importance of CaM binding for Cobl’s functions. Cobl-induced dendritic branch initiation was preceded by Ca2+ signals and coincided with local F-actin and CaM accumulations. CaM inhibitor studies showed that Cobl-mediated branching is strictly dependent on CaM activity. Mechanistic studies revealed that Ca2+/CaM modulates Cobl’s actin binding properties and furthermore promotes Cobl’s previously identified interactions with the membrane-shaping F-BAR protein syndapin I, which accumulated with Cobl at nascent dendritic protrusion sites. The findings of our study demonstrate a direct regulation of an actin nucleator by Ca2+/CaM and reveal that the Ca2+/CaM-controlled molecular mechanisms we discovered are crucial for Cobl’s cellular functions. By unveiling the means of Cobl regulation and the mechanisms, by which Ca2+/CaM signals directly converge on a cellular effector promoting actin filament formation, our work furthermore sheds light on how local Ca2+ signals steer and power branch initiation during early arborization of nerve cells—a key process in neuronal network formation.  相似文献   

3.
Spatial control of cortical actin nucleation is indispensable for proper establishment and plasticity of cell morphology. Cobl is a novel WH2 domain-based actin nucleator. The cellular coordination of Cobl's nucleation activity, however, has remained elusive. Here, we reveal that Cobl's cellular functions are dependent on syndapin. Cobl/syndapin complexes form in vivo, as demonstrated by colocalization, coimmunoprecipitation and subcellular recruitment studies. In vitro reconstitutions and subcellular fractionations demonstrate that, via its lipid-binding Fer/CIP4 Homology (FCH)-Bin/Amphiphysin/Rvs (F-BAR) domain, syndapin recruits Cobl to membranes. Consistently, syndapin I RNAi impairs cortical localization of Cobl. Further functional studies in neurons show that Cobl and syndapin I work together in dendritic arbor development. Importantly, both proteins are crucial for dendritogenesis. Cobl-mediated functions in neuromorphogenesis critically rely on syndapin I and interestingly also on Arp3. Endogenous Cobl, syndapin I and the Arp2/3 complex activator and syndapin-binding partner N-WASP were present in one complex, as demonstrated by coimmunoprecipitations. Together, these data provide detailed insights into the molecular basis for Cobl-mediated functions and reveal that different actin nucleators are functionally intertwined by syndapin I during neuromorphogenesis.  相似文献   

4.
Coordinated functions of the actin cytoskeleton and microtubules, which need to be carefully controlled in time and space, are required for the drastic alterations of neuronal morphology during neuromorphogenesis and neuronal network formation. A key process in neuronal actin dynamics is filament formation by actin nucleators, such as the Arp2/3 complex, formins and the brain-enriched, novel WH2 domain-based nucleators Spire and cordon-bleu (Cobl). We here discuss in detail the currently available data on the roles of these actin nucleators during neuromorphogenesis and highlight how their required control at the plasma membrane may be brought about. The Arp2/3 complex was found to be especially important for proper growth cone translocation and axon development. The underlying molecular mechanisms for Arp2/3 complex activation at the neuronal plasma membrane include a recruitment and an activation of N-WASP by lipid- and F-actin-binding adaptor proteins, Cdc42 and phosphatidyl-inositol-(4,5)-bisphosphate (PIP(2)). Together, these components upstream of N-WASP and the Arp2/3 complex ensure fine-control of N-WASP-mediated Arp2/3 complex activation and control distinct functions during axon development. They are counteracted by Arp2/3 complex inhibitors, such as PICK, which likewise play an important role in neuromorphogenesis. In contrast to the crucial role of the Arp2/3 complex in proper axon development, dendrite formation and dendritic arborization was revealed to critically involve the newly identified actin nucleator Cobl. Cobl is a brain-enriched protein and uses three Wiskott-Aldrich syndrome protein homology 2 (WH2) domains for actin binding and for promoting the formation of non-bundled, unbranched filaments. Thus, cells use different actin nucleators to steer the complex remodeling processes underlying cell morphogenesis, the formation of cellular networks and the development of complex body plans.  相似文献   

5.
The branching behaviors of both dendrites and axons are part of a neuronal maturation process initiated by the generation of small and transient membrane protrusions. These are highly dynamic, actin-enriched structures, collectively called filopodia, which can mature in neurons to form stable branches. Consequently, the generation of filopodia protrusions is crucial during the formation of neuronal circuits and involves the precise control of an interplay between the plasma membrane and actin dynamics. In this issue of PLOS Biology, Hou and colleagues identify a Ca2+/CaM-dependent molecular machinery in dendrites that ensures proper targeting of branch formation by activation of the actin nucleator Cobl.  相似文献   

6.
Wu LJ  Ren M  Wang H  Kim SS  Cao X  Zhuo M 《PloS one》2008,3(1):e1407
Neurabin is a scaffolding protein that interacts with actin and protein phosphatase-1. Highly enriched in the dendritic spine, neurabin is important for spine morphogenesis and synaptic formation. However, less is known about the role of neurabin in hippocampal plasticity and its possible effect on behavioral functions. Using neurabin knockout (KO) mice, here we studied the function of neurabin in hippocampal synaptic transmission, plasticity and behavioral memory. We demonstrated that neurabin KO mice showed a deficit in contextual fear memory but not auditory fear memory. Whole-cell patch clamp recordings in the hippocampal CA1 neurons showed that long-term potentiation (LTP) was significantly reduced, whereas long-term depression (LTD) was unaltered in neurabin KO mice. Moreover, increased AMPA receptor but not NMDA receptor-mediated synaptic transmission was found in neurabin KO mice, and is accompanied by decreased phosphorylation of GluR1 at the PKA site (Ser845) but no change at the CaMKII/PKC site (Ser831). Pre-conditioning with LTD induction rescued the following LTP in neurabin KO mice, suggesting the loss of LTP may be due to the saturated synaptic transmission. Our results indicate that neurabin regulates contextual fear memory and LTP in hippocampal CA1 pyramidal neurons.  相似文献   

7.
Neurogenesis has been shown to occur in the cerebral cortex in adult rats after ischemic stroke. The origin of the newborn neurons is largely unknown. This study aimed to explore cell division in the poststroke penumbral cortex. Adult male Wistar rats were subjected to photothrombotic ring stroke. After repeated delivery of the DNA duplication marker BrdU, the animals were sacrificed at various times poststroke. BrdU was detected by immunohistochemistry/immunofluorescence labeling, as was the M-phase marker Phos H3 and the spindle components α-tubulin/γ-tubulin. DNA damage was examined by TUNEL staining. Cell type was ascertained by double immunolabeling with the neuronal markers Map-2ab/β-tubulin III and NeuN/Hu or the astrocyte marker GFAP. From 16h poststroke, BrdU-immunolabeled cells appeared in the penumbral cortex. From 24h, Phos H3 was colocalized with BrdU in the nuclei. Mitotic spindles immunolabeled by α-tubulin/γ-tubulin appeared inside the cortical cells containing BrdU-immunopositive nuclei. Unexpectedly, the markers of neuronal differentiation, Map-2ab/β-tubulin III/NeuN/Hu, were expressed in the Phos H3-immunolabeled cells, and NeuN was detected in some cells containing spindles. This study suggests that in response to a sublethal ischemic insult, endogenous cells with neuronal immunolabeling may duplicate their nuclear DNA and commit cell mitosis to generate daughter neurons in the penumbral cortex in adult rats.  相似文献   

8.
Adducins are a family of proteins found in cytoskeleton junctional complexes, which bind and regulate actin filaments and actin-spectrin complexes. In brain, adducin is expressed at high levels and is identified as a constituent of synaptic structures, such as dendritic spines and growth cones of neurons. Adducin-induced changes in dendritic spines are involved in activity-dependent synaptic plasticity processes associated with learning and memory, but the mechanisms underlying these functions remain to be elucidated. Here, β-adducin knockout (KO) mice were used to obtain a deeper insight into the role of adducin in these processes. We showed that β-adducin KO mice showed behavioral, motor coordination and learning deficits together with an altered expression and/or phosphorylation levels of α-adducin and γ-adducin. We found that β-adducin KO mice exhibited deficits in learning and motor performances associated with an impairment of long-term potentiation (LTP) and long-term depression (LTD) in the hippocampus. These effects were accompanied by a decrease in phosphorylation of adducin, a reduction in α-adducin expression levels and upregulation of γ-adducin in hippocampus, cerebellum and neocortex of mutant mice. In addition, we found that the mRNA encoding β-adducin is also located in dendrites, where it may participate in the fine modulation of LTP and LTD. These results strongly suggest coordinated expression and phosphorylation of adducin subunits as a key mechanism underlying synaptic plasticity, motor coordination performance and learning behaviors.  相似文献   

9.
Neurogenesis occurs in the cerebral cortex of adult rats after focal cerebral ischemia. Whether or not the newborn neurons could synthesize neurotransmitters is unknown. To elucidate such a possibility, a photothrombotic ring stroke model with spontaneous reperfusion was induced in adult male Wistar rats. The DNA duplication marker BrdU was repeatedly injected, and the rats were sacrificed at various times after stroke. To detect BrdU nuclear incorporation and various neurotransmitters, brain sections were processed for single/double immunocytochemistry and single/double/triple immunofluorescence. Stereological cell counting was performed to assess the final cell populations. At 48 h, 5 days, 7 days, 30 days, 60 days and 90 days after stroke, numerous cells were BrdU-immunolabeled in the penumbral cortex. Some of these were doubly immunopositive to the cholinergic neuron-specific marker ChAT or GABAergic neuron-specific marker GAD. As analyzed by 3-D confocal microscopy, the neurotransmitters acetylcholine and GABA were colocalized with BrdU in the same cortical cells. In addition, GABA was colocalized with the neuron-specific marker Neu N in the BrdU triple-immunolabeled cortical cells. This study suggests that the newborn neurons are capable of synthesizing the neurotransmitters acetylcholine and GABA in the penumbral cortex, which is one of the fundamental requisites for these neurons to function in the poststroke recovery.  相似文献   

10.
Kim TW  Kim H  Sun W 《Molecules and cells》2011,31(4):379-383
Astrocytes play critical roles in many aspects of brain functions via modulation of neurotransmission, metabolism, and structural remodeling in response to physiological or pathological stimuli. Activation of astrocytes is a common phenomenon in many brain pathologies such as stroke, trauma, and neurodegenerative diseases. In this study, we found that gene deletion of the pro-apoptotic gene Bax (Bax-knockout) resulted in a spontaneous reactive astrogliosis in the dentate gyrus, as evidenced by the increased number/volume of astrocytes and cytoplasmic localization of the Olig2 protein. On the other hand, there was no evidence for microglial activation in the dentate gyrus of Bax-knockout mice. Previously, we reported that Bax-knockout mice failed to execute programmed cell death of adult-produced neurons, but the surplus neurons eventually impaired normal synaptic connections and dendritic arborization of dentate gyrus neurons. Therefore, we propose that the reactive astrocytes in the Baxknockout mice may play a role in tissue remodeling of the dentate gyrus following a failure in the programmed cell death of adult-produced neurons.  相似文献   

11.
Recovery from stroke engages mechanisms of neural plasticity. Here we examine a role for MHC class I (MHCI) H2-Kb and H2-Db, as well as PirB receptor. These molecules restrict synaptic plasticity and motor learning in the healthy brain. Stroke elevates neuronal expression not only of H2-Kb and H2-Db, but also of PirB and downstream signaling. KbDb knockout (KO) or PirB KO mice have smaller infarcts and enhanced motor recovery. KO hippocampal organotypic slices, which lack an intact peripheral immune response, have less cell death after in?vitro ischemia. In PirB KO mice, corticospinal projections from the motor cortex are enhanced, and the reactive astrocytic response is dampened after MCAO. Thus, molecules that function in the immune system act not only to limit synaptic plasticity in healthy neurons, but also to exacerbate brain injury after ischemia. These results suggest therapies for stroke by targeting MHCI and PirB.  相似文献   

12.
The spontaneous and unregulated polymerization of actin filaments is inhibited in cells by actin monomer-binding proteins such as profilin and Tβ4. Eukaryotic cells and certain pathogens use filament nucleators to stabilize actin polymerization nuclei, whose formation is rate-limiting. Known filament nucleators include the Arp2/3 complex and its large family of nucleation promoting factors (NPFs), formins, Spire, Cobl, VopL/VopF, TARP and Lmod. These molecules control the time and location for polymerization, and additionally influence the structures of the actin networks that they generate. Filament nucleators are generally unrelated, but with the exception of formins they all use the WASP-Homology 2 domain (WH2 or W), a small and versatile actin-binding motif, for interaction with actin. A common architecture, found in Spire, Cobl and VopL/VopF, consists of tandem W domains that bind three to four actin subunits to form a nucleus. Structural considerations suggest that NPFs–Arp2/3 complex can also be viewed as a specialized form of tandem W-based nucleator. Formins are unique in that they use the formin-homology 2 (FH2) domain for interaction with actin and promote not only nucleation, but also processive barbed end elongation. In contrast, the elongation function among W-based nucleators has been “outsourced” to a dedicated family of proteins, Eva/VASP, which are related to WASP-family NPFs.  相似文献   

13.
缺血性卒中是临床常见疾病,且致死致残率高,幸存的患者预后多不同程度的患有偏瘫等后遗症,但目前还没有好的治疗方法。很长一段时间以来,卒中后的治疗关注点在于神经元的保护,割裂了神经元和周围细胞的联系。2001年,"神经血管单元"概念的提出为缺血性卒中的临床治疗提供了新的角度。此外,有研究表明Notch信号通路参与了神经、血管再生过程,对于卒中后神经血管单元的修复有调节作用。因此,本文从神经血管单元和Notch信号通路两个切入点综述了二者在缺血性卒中发生后的作用。  相似文献   

14.
Lee HY  Ge WP  Huang W  He Y  Wang GX  Rowson-Baldwin A  Smith SJ  Jan YN  Jan LY 《Neuron》2011,72(4):630-642
How transmitter receptors modulate neuronal signaling by regulating voltage-gated ion channel expression remains an open question. Here we report dendritic localization of mRNA of Kv4.2 voltage-gated potassium channel, which regulates synaptic plasticity, and its local translational regulation by fragile X mental retardation protein (FMRP) linked to fragile X syndrome (FXS), the most common heritable mental retardation. FMRP suppression of Kv4.2 is revealed by elevation of Kv4.2 in neurons from fmr1 knockout (KO) mice and in neurons expressing Kv4.2-3'UTR that binds FMRP. Moreover, treating hippocampal slices from fmr1 KO mice with Kv4 channel blocker restores long-term potentiation induced by moderate stimuli. Surprisingly, recovery of Kv4.2 after N-methyl-D-aspartate receptor (NMDAR)-induced degradation also requires FMRP, likely due to NMDAR-induced FMRP dephosphorylation, which turns off FMRP suppression of Kv4.2. Our study of FMRP regulation of Kv4.2 deepens our knowledge of NMDAR signaling and reveals a FMRP target of potential relevance to FXS.  相似文献   

15.
张映  刘颖异  胡玲琴  马驰  潘玉君 《生物磁学》2014,(13):2566-2568
急性脑梗死约占全部脑卒中的70%,病死率和致残率高,且极易复发。但目前针对急性脑梗死在时间窗内溶栓、抗凝等治疗手段不能从根本上切实有效地修复受损脑组织,且伴有出血等风险。寻找脑梗死形成发展的原因并予以治疗迫在眉睫。酸中毒是引起缺血性脑损伤的重要机制。大量实验研究表明,酸中毒能加重神经元的缺血性损伤,且其梗死面积与酸中毒的程度直接相关。但缺血产生的酸中毒如何引起神经元损伤的确切机制尚不明确。最近研究发现酸中毒能激活一种在中枢及周围神经中广泛存在的膜通道,即酸敏感离子通道,它对Ca^2+通透,能引起细胞内Ca^2+超载,同时能激活胞内酶引起细胞内蛋白质、脂类及核酸的降解,加重缺血后脑损伤。本文就酸敏感离子通道1a与脑梗死做一综述。  相似文献   

16.
Dendritic morphology is a critical determinant of neuronal connectivity, and calcium signaling plays a predominant role in shaping dendrites. Altered dendritic morphology and genetic mutations in calcium signaling are both associated with neurodevelopmental disorders (NDDs). In this study we tested the hypothesis that dendritic arborization and NDD‐relevant behavioral phenotypes are altered by human mutations that modulate calcium‐dependent signaling pathways implicated in NDDs. The dendritic morphology of pyramidal neurons in CA1 hippocampus and somatosensory cortex was quantified in Golgi‐stained brain sections from juvenile mice of both sexes expressing either a human gain‐of‐function mutation in ryanodine receptor 1 (T4826I‐RYR1), a human CGG repeat expansion (170‐200 CGG repeats) in the fragile X mental retardation gene 1 (FMR1 premutation), both mutations (double mutation; DM), or wildtype mice. In hippocampal neurons, increased dendritic arborization was observed in male T4826I‐RYR1 and, to a lesser extent, male FMR1 premutation neurons. Dendritic morphology of cortical neurons was altered in both sexes of FMR1 premutation and DM animals with the most pronounced differences seen in DM females. Genotype also impaired behavior, as assessed using the three‐chambered social approach test. The most striking lack of sociability was observed in DM male and female mice. In conclusion, mutations that alter the fidelity of calcium signaling enhance dendritic arborization in a brain region‐ and sex‐specific manner and impair social behavior in juvenile mice. The phenotypic outcomes of these mutations likely provide a susceptible biological substrate for additional environmental stressors that converge on calcium signaling to determine individual NDD risk.  相似文献   

17.
Medina PM  Swick LL  Andersen R  Blalock Z  Brenman JE 《Genetics》2006,172(4):2325-2335
Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the formation of F-actin-rich dendritic filopodia or dendritic spines. We developed a forward genetic screen utilizing transgenic Drosophila second instar larvae expressing an actin, green fluorescent protein (GFP) fusion protein (actin::GFP) in subsets of sensory neurons. Utilizing this fluorescent transgenic reporter, we conducted a forward genetic screen of >4000 mutagenized chromosomes bearing lethal mutations that affected multiple aspects of larval dendrite development. We isolated 13 mutations on the X and second chromosomes composing 11 complementation groups affecting dendrite outgrowth/branching, dendritic filopodia formation, or actin::GFP localization within dendrites in vivo. In a fortuitous observation, we observed that the structure of dendritic arborization (da) neuron dendritic filopodia changes in response to a changing environment.  相似文献   

18.
Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer’s disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4’s cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19–21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7–8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.  相似文献   

19.
With more than 795,000 cases occurring every year, stroke has become a major problem in the United States across all demographics. Stroke is the leading cause of long-term disability and is the fifth leading cause of death in the US. Ischemic stroke represents 87% of total strokes in the US, and is currently the main focus of stroke research. This literature review examines the risk factors associated with ischemic stroke, changes in cell morphology and signaling in the brain after stroke, and the advantages and disadvantages of in vivo and in vitro ischemic stroke models. Classification systems for stroke etiology are also discussed briefly, as well as current ischemic stroke therapies and new therapeutic strategies that focus on the potential of stem cells to promote stroke recovery.  相似文献   

20.
Behavioral intervention therapy has proven beneficial in the treatment of autism and intellectual disabilities (ID), raising the possibility of certain changes in molecular mechanisms activated by these interventions that may promote learning. Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by autistic features and intellectual disability and can serve as a model to examine mechanisms that promote learning. FXS results from mutations in the fragile X mental retardation 1 gene (Fmr1) that prevents expression of the Fmr1 protein (FMRP), a messenger RNA (mRNA) translation regulator at synapses. Among many other functions, FMRP organizes a complex with the actin cytoskeleton-regulating small Rho GTPase Rac1. As in humans, Fmr1 KO mice lacking FMRP display autistic-like behaviors and deformities of actin-rich synaptic structures in addition to impaired hippocampal learning and synaptic plasticity. These features have been previously linked to proper function of actin remodeling proteins that includes Rac1. An important step in Rac1 activation and function is its translocation to the membrane, where it can influence synaptic actin cytoskeleton remodeling during hippocampus-dependent learning. Herein, we report that Fmr1 KO mouse hippocampus exhibits increased levels of membrane-bound Rac1, which may prevent proper learning-induced synaptic changes. We also determine that increasing training intensity during fear conditioning (FC) training restores contextual memory in Fmr1 KO mice and reduces membrane-bound Rac1 in Fmr1 KO hippocampus. Increased training intensity also results in normalized long-term potentiation in hippocampal slices taken from Fmr1 KO mice. These results point to interventional treatments providing new therapeutic options for FXS-related cognitive dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号