首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effects of 3′azido-2′,3′dideoxyuridine-5′-triphosphate in complex with the Mg2+ ion (azido-ddUTP·Mg) on the dUTPases of the human, E. coli, and equine infectious anemia virus have been compared. Azido-ddUTP is analogous to drugs used in the treatment of HIV. Here it is shown to inhibit the bacterial dUTPase in a competitive manner (Ki?=?9.3?μM), but to exhibit only marginal or no binding to the human and viral dUTPases, respectively. This is the first demonstration of an inhibitor with a strong preference for binding to a bacterial dUTPase over the human enzyme. The specific binding to the E. coli dUTPase is surprising in view of the close to identical substrate pockets among the three dUTPases tested. The results are discussed with reference to the possibility of designing active site directed inhibitors that bind to the homotrimeric dUTPase of a pathogen but not to the human form.  相似文献   

2.
Xylose reductase catalyzes the NAD(P)H-dependent reduction of xylose to xylitol and is essential for growth on xylose by yeasts. To understand the nature of coenzyme binding to the Pichia stipitis xylose reductase, we investigated the role of the strictly conserved Lys270 in the putative IPKS coenzyme binding motif by site-directed mutagenesis. The Lys270Met variant exhibited lower enzyme activity than the wild-type enzyme. The apparent affinity of the variant for NADPH was decreased 5–16-fold, depending on the substrate used, while the apparent affinity for NADH, measured using glyceraldehyde as the substrate, remained unchanged. This resulted in 4.3-fold higher affinity for NADH over NADPH using glyceraldehyde as the substrate. The variant also showed a 14-fold decrease in Km for xylose, but only small changes were observed in Km values for glyceraldehyde. The wild-type enzyme, but not the Lys270Met variant, was susceptible to modification by the Lys-specific pyridoxal 5′-phosphate. Results of our chemical modification and site-directed mutagenesis study indicated that Lys270 is involved in both NADPH and d-xylose binding in the P. stipitis xylose reductase.  相似文献   

3.
Genomic analysis of the hyperthermophilic archaeon Thermococcus onnurineus NA1 (TNA1) revealed the presence of a 471-bp open reading frame with 93% similarity to the dUTPase from Pyrococcus furiosus. The dUTPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dUTP at about a 10-fold higher rate than dCTP. The protein behaved as a dimer in gel filtration chromatography, even though it contains five motifs that are conserved in all homotrimeric dUTPases. The dUTPase showed optimum activity at 80°C and pH 8.0, and it was highly thermostable with a half-life (t 1/2) of 170 min at 95°C. The enzymatic activity of the dUTPase was largely unaffected by variations in MgCl2, KCl, (NH4)2SO4, and Triton X-100 concentrations, although it was reduced by bovine serum albumin. Addition of the dUTPase to polymerase chain reactions (PCRs) run with TNA1 DNA polymerase significantly increased product yield, overcoming the inhibitory effect of dUTP. Further, addition of the dUTPase allowed PCR amplification of targets up to 15 kb in length using TNA1 DNA polymerase. This enzyme also improved the PCR efficiency of other archaeal family B type DNA polymerases, including Pfu and KOD.  相似文献   

4.
dUTPases are essential to eliminate dUTP for DNA integrity and provide dUMP for thymidylate biosynthesis. Mycobacterium tuberculosis apparently lacks any other thymidylate biosynthesis pathway, therefore dUTPase is a promising antituberculotic drug target. Crystal structure of the mycobacterial enzyme in complex with the isosteric substrate analog, α,β-imido-dUTP and Mg2+ at 1.5 Å resolution was determined that visualizes the full-length C-terminus, previously not localized. Interactions of a conserved motif important in catalysis, the Mycobacterium-specific five-residue-loop insert and C-terminal tetrapeptide could now be described in detail. Stacking of C-terminal histidine upon the uracil moiety prompted replacement with tryptophan. The resulting sensitive fluorescent sensor enables fast screening for binding of potential inhibitors to the active site. Kd for α,β-imido-dUTP binding to mycobacterial dUTPase is determined to be 10-fold less than for human dUTPase, which is to be considered in drug optimization. A robust continuous activity assay for kinetic screening is proposed.  相似文献   

5.
The essential enzyme dUTPase is responsible for preventive DNA repair via exclusion of uracil. Lack or inhibition of the enzyme induces thymine‐less cell death in cells performing active DNA synthesis, serving therefore as an important chemotherapeutic target. In the present work, employing differential circular dichroism spectroscopy, we show that D. mel. dUTPase, a recently described eukaryotic model, has a similar affinity of binding towards α,β‐imino‐dUTP as compared to the prokaryotic E. coli enzyme. However, in contrast to the prokaryotic dUTPase, the nucleotide exerts significant protection against tryptic digestion at a specific tryptic site 20 Å far from the active site in the fly enzyme. This result indicates that binding of the nucleotide in the active site induces an allosteric conformational change within the central threefold channel of the homotrimer exclusively in the eukaryotic enzyme. Nucleotide binding induced allosterism in the D. mel. dUTPase, but not in the E. coli enzyme, might be associated with the altered hydropathy of subunit interfaces in these two proteins.  相似文献   

6.
The aminopeptidase N (TH-4AP) of Streptomyces sp. TH-4 was purified from a culture supernatant. The purified enzyme had a molecular mass of 95 kDa. The gene encoding TH-4AP was cloned and sequenced. The primary structure of the protein possessed the PepN-conserved motif GxMEN and the zinc-binding motif HExxHx18E, and showed 88% identity with that of PepN from Streptomyces lividans strain 66. We succeeded in overproducing a His-tagged recombinant enzyme using Escherichia coli. The enzyme had a 1.5-fold higher activity in the presence of cobalt ions than in their absence. To evaluate the possible application of TH-4AP to decrease the content of bitter peptides, we investigated the ability of Streptomyces aminopeptidases to hydrolyze synthetic peptides by a coupling method using l-amino acid oxidase and peroxidase. The substrate specificity of TH-4AP toward synthetic peptides was significantly different from that toward aminoacyl-p-nitroanilide derivatives.  相似文献   

7.
The selenophosphate synthetases from several organisms contain a selenocysteine residue in their active site where the Escherichia coli enzyme contains a cysteine. The synthesis of these enzymes, therefore, depends on their own reaction product. To analyse how this self-dependence is correlated with the selenium status, e.g. after recovery from severe selenium starvation, we expressed the gene for the selenocysteine-containing selenophosphate synthetase from Haemophilus influenzae (selD HI) in an E. coliΔselD strain. Gene selD HI gave rise to a selenium-containing gene product and also supported – via its activity – the formation of E. coli selenoproteins. The results provide evidence either for the suppression of the UGASec codon with the insertion of an amino acid allowing the formation of a functional product or for a bypass of the selenophosphate requirement. We also show that the selenocysteine synthesis and the insertion systems of the two organisms are fully compatible despite conspicuous differences in the mRNA recognition motif. Received: 8 July 1997 / Accepted: 3 September 1997  相似文献   

8.
NMR measurements can give important information on solution structure, without the necessity for a full-scale solution structure determination. The C-terminal protein binding domain of the ribosome-associated chaperone protein trigger factor is composed of non-contiguous parts of the polypeptide chain, with an interpolated prolyl isomerase domain. A construct of the C-terminal domain of Escherichia coli trigger factor containing residues 113–149 and 247–432, joined by a Gly-Ser-Gly-Ser linker, is well folded and gives excellent NMR spectra in solution. We have used NMR measurements on this construct, and on a longer construct that includes the prolyl isomerase domain, to distinguish between two possible structures for the C-terminal domain of trigger factor, and to assess the behavior of the trigger factor C-terminal domain in solution. Two X-ray crystal structures, of intact trigger factor from E. coli (Ferbitz et al., Nature 431:590–596, 2004), and of a truncated trigger factor from Vibrio cholerae (Ludlam et al., Proc Natl Acad Sci USA 101:13436–13441, 2004) showed significant differences in the structure of the C-terminal domain, such that the two structures could not be superimposed. We show using NMR chemical shifts and long range nuclear Overhauser effects that the secondary and tertiary structure of the E. coli C-terminal domain in solution is consistent with the crystal structure of the E. coli trigger factor and not with the V. cholerae protein. Given the similarity of the amino acid sequences of the E. coli and V. cholerae proteins, it appears likely that the structure of the V. cholerae protein has been distorted as a result of truncation of a 44-amino acid segment at the C-terminus. Analysis of residual dipolar coupling measurements shows that the overall topology of the solution structure is completely inconsistent with both structures. Dynamics analysis of the C-terminal domain using T1, T2 and heteronuclear NOE parameters show that the protein is overall rather flexible. These results indicate that the structure of this domain in solution resembles the X-ray crystal structure of the E. coli protein in secondary structure and at least some tertiary contacts, but that the overall topology differs in solution, probably due to structural fluctuation.  相似文献   

9.
Lysine 194 in conserved stretch 1 of tetrameric isocitrate lyase from Escherichia coli has been replaced by using the restriction-enzyme-site elimination method of directed mutagenesis. Expression of subunits of each variant and of wild-type (wt) enzyme was equivalent and all variants assembled into tetrameric proteins. The variants K194R and K194H had kcat values relative to that of wt enzyme taken as 100 of 11 and 7, respectively. K m values for Mg2+-Ds-isocitrate (in mM units) were: 0.13 for wt-enzyme; 0.12 for the K194R variant; and 0.55 for the K194H variant. Substitution at position 194 of Leu or Glu resulted in zero catalytic activity. These results establish that Lys 194 is another functional residue in conserved stretch one of isocitrate lyase from E. coli besides H184, K193, C195, and H197. Because K194 can be specifically replaced by the basic residues His and Arg with resultant lowered activity and by His with an increased K m value, it may contribute to a cation center and facilitate substrate binding as well as orientation of the developing transition state. Received: 3 December 1996 / Accepted: 18 December 1996  相似文献   

10.
The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 M for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 M). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.  相似文献   

11.
Glutamyl-tRNA reductase (GluTR) is the first enzyme committed to tetrapyrrole biosynthesis by the C5-pathway. This enzyme transforms glutamyl-tRNA into glutamate-1-semi-aldehyde, which is then transformed into 5-amino levulinic acid by the glutamate-1-semi-aldehyde 2,1-aminomutase. Binding of heme to GluTR seems to be relevant to regulate the enzyme function. Recombinant GluTR from Acidithiobacillus ferrooxidans an acidophilic bacterium that participates in bioleaching of minerals was expressed in Escherichia coli and purified as a soluble protein containing type b heme. Upon control of the cellular content of heme in E. coli, GluTR with different levels of bound heme was obtained. An inverse correlation between the activity of the enzyme and the level of bound heme to GluTR suggested a control of the enzyme activity by heme. Heme bound preferentially to dimeric GluTR. An intact dimerization domain was essential for the enzyme to be fully active. We propose that the cellular levels of heme might regulate the activity of GluTR and ultimately its own biosynthesis.  相似文献   

12.
In order to increase the thermal stability and the catalytic properties of pyranose oxidase (P2Ox) from Trametes multicolor toward its poor substrate D-galactose and the alternative electron acceptor 1,4-benzoquinone (1,4-BQ), we designed the triple-mutant T169G/E542K/V546C. Whereas the wild-type enzyme clearly favors D-glucose as its substrate over D-galactose [substrate selectivity (kcat/KM)Glc/(kcat/KM)Gal = 172], the variant oxidizes both sugars equally well [(kcat/KM)Glc/(kcat/KM)Gal = 0.69], which is of interest for food biotechnology. Furthermore, the variant showed lower KM values and approximately ten-fold higher kcat values for 1,4-BQ when D-galactose was used as the saturating sugar substrate, which makes this enzyme particularly attractive for use in biofuel cells and enzyme-based biosensors. In addition to the altered substrate specificity and reactivity, this mutant also shows significantly improved thermal stability. The half life time at 60°C was approximately 10 h, compared to 7.6 min for the wild-type enzyme. We performed successfully small-scale bioreactor pilot conversion experiments of D -glucose/D -galactose mixtures at both 30 and 50°C, showing the usefulness of this P2Ox variant in biocatalysis as well as the enhanced thermal stability of the enzyme. Moreover, we determined the crystal structure of the mutant in its unligated form at 1.55 Å resolution. Modeling D-galactose in position for oxidation at C2 into the mutant active site shows that substituting Thr for Gly at position 169 favorably accommodates the axial C4 hydroxyl group that would otherwise clash with Thr169 in the wild-type.  相似文献   

13.
We have crystallized the N-terminal actin binding domain (ABD1) of human fimbrin, a representative member of the largest class of actin crosslinking proteins. Diffraction from these crystals is consistent with the orthorhombic space group P212121 (a = 50.03 Å, b = 61.24 Å, c = 102.30 Å). These crystals contain one molecule in the asymmetric unit and diffract to at least 1.9 Å resolution. The crystal structure of ABD1 will be the first structure of an actin crosslinking domain. Proteins 28:452–453, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Incubation of maize branching enzyme, mBEI and mBEII, with 100 μM diethylpyrocarbonate (DEPC) rapidly inactivated the enzymes. Treatment of the DEPC-inactivated enzymes with 100–500 mM hydroxylamine restored the enzyme activities. Spectroscopic data indicated that the inactivation of BE with DEPC was the result of histidine modification. The addition of the substrate amylose or amylopectin retarded the enzyme inactivation by DEPC, suggesting that the histidine residues are important for substrate binding. In maize BEII, conserved histidine residues are in catalytic regions 1 (His320) and 4 (His508). His320 and His508 were individually replaced by Ala via site-directed mutagenesis to probe their role in catalysis. Expression of these mutants inE. coli showed a significant decrease of the activity and the mutant enzymes hadK m values 10 times higher than the wild type. Therefore, residues His320 and His508 do play an important role in substrate binding.  相似文献   

15.
16.
The D ‐aldohexose dehydrogenase from the thermoacidophilic archaeon Thermoplasma acidophilum (AldT) is a homotetrameric enzyme that catalyzes the oxidation of several D ‐aldohexoses, especially D ‐mannose. AldT comprises a unique C‐terminal tail motif (residues 247–255) that shuts the active‐site pocket of the neighboring subunit. The functional role of the C‐terminal tail of AldT has been investigated using mutational and crystallographic analyses. A total of four C‐terminal deletion mutants (Δ254, Δ253, Δ252, and Δ249) and two site‐specific mutants (Y86G and P254G) were expressed by Escherichia coli and purified. Enzymatic characterization of these mutants revealed that the C‐terminal tail is a requisite and that the interaction between Tyr86 and Pro254 is critical for enzyme activity. The crystal structure of the Δ249 mutant was also determined. The structure showed that the active‐site loops undergo a significant conformational change, which leads to the structural deformation of the substrate‐binding pocket. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
Cell‐1 is a host‐derived beta‐1,4‐endoglucanase (Glycohydrolase Family 9 [GHF9]) from the lower termite Reticulitermes flavipes. Here, we report on the heterologous production of Cell‐1 using eukaryotic (Baculovirus Expression Vector System; BEVS) and prokaryotic (E. coli) expression systems. The BEVS‐expressed enzyme was more readily obtained in solubilized form and more active than the E. coli–expressed enzyme. Km and Vmax values for BEVS‐expressed Cell‐1 against the model substrate CMC were 0.993% w/v and 1.056 µmol/min/mg. Additional characterization studies on the BEVS‐expressed enzyme revealed that it possesses activity comparable to the native enzyme, is optimally active around pH 6.5–7.5 and 50–60°C, is inhibited by EDTA, and displays enhanced activity up to 70°C in the presence of CaCl2. These findings provide a foundation on which to begin subsequent investigations of collaborative digestion by coevolved host and symbiont digestive enzymes from R. flavipes that include GHF7 exoglucanases, GHF1 beta glucosidases, phenol‐oxidizing laccases, and others. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
A novel pyrroloquinoline quinone dependent glucose dehydrogenase like enzyme (PQQ GDH) was isolated from Sorangium cellulosum So ce56. The putative coding region was cloned, over expressed in E. coli and the resulting enzyme was characterized. The recombinant protein has a relative molecular mass of 63 kDa and shows 43% homology to PQQ GDH-B from Acinetobacter calcoaceticus. In the presence of PQQ and CaCl2 the enzyme has dehydrogenase activity with the substrate glucose as well as with other mono- and disaccharides. The thermal stability and its pH activity profile mark the enzyme as a potential glucose biosensor enzyme. In order to decrease the activity on maltose, which is unwanted for a potential application in biosensors, the protein was rationally modified at three specified positions. The best variant showed a 59% reduction in activity on maltose compared to the wild type enzyme. The catalytic efficiency (k cat/K M) was reduced fivefold but the specific activity still amounted to 63% of the wild type activity.  相似文献   

19.
Escherichia coli Orf135 protein is thought to be an enzyme that efficiently hydrolyzes oxidatively damaged nucleotides such as 2-hydroxy-dATP, 8-hydroxy-dGTP and 5-hydroxy-CTP, in addition to 5-methyl-dCTP, dCTP and CTP, thus preventing mutations in cells caused by unfavorable base pairing. Nucleotide pool sanitization by Orf135 is important since organisms are continually subjected to potential damage by reactive oxygen species produced during respiration. It is known that the frequency of spontaneous and H2O2-induced mutations is two to threefold higher in the orf135 - strain compared with the wild-type. Orf135 is a member of the Nudix family of proteins which hydrolyze nucleoside diphosphate derivatives. Nudix hydrolases are characterized by the presence of a conserved motif, although they recognize various substrates and possess a variety of substrate binding pockets. We are interested in delineating the mechanism by which Orf135 recognizes oxidatively damaged nucleotides. To this end, we are investigating the tertiary structure of Orf135 and its interaction with substrate using NMR. Herein, we report on the 1H, 13C and 15N resonance assignments of Orf135, which should contribute towards a structural understanding of Orf135 and its interaction with substrate.  相似文献   

20.

Background  

The microbes Escherichia coli and Pichia pastoris are convenient prokaryotic and eukaryotic hosts, respectively, for the recombinant production of proteins at laboratory scales. A comparative study was performed to evaluate a range of constructs and process parameters for the heterologous intra- and extracellular expression of genes encoding the industrially relevant enzyme galactose 6-oxidase (EC 1.1.3.9) from the fungus Fusarium graminearum. In particular, the wild-type galox gene from F. graminearum, an optimized variant for E. coli and a codon-optimized gene for P. pastoris were expressed without the native pro-sequence, but with a His-tag either at the N- or the C-terminus of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号