首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bruton's tyrosine kinase (BTK) plays an important role in B cell development. Deletion of C-terminal 14 amino acids of the SH3 domain of BTK results in X-linked agammaglobulinemia (XLA), an inherited disease. We report here on the stability and folding of SH3 domain of BTK. Peptides corresponding to residues 216–273 (58 residues) and 216–259 (44 residues) of BTK SH3 domain were synthesized by solid phase methods; the first peptide constitutes the entire SH3 domain of BTK while the latter peptide lacks 14 amino acid residues of the C-terminal. The 58 amino acid peptide forms mainly a β-barrel type folding unit. Although small and lacking disulfide bonds, this peptide is extremely stable to thermal denaturation. Based on circular dichroism measurements, its melting temperature was found to be high, 82°C at pH 6.0. However, the Gibbs free energy (ΔG) of the intrinsic stability and thermodynamic spontaneity of unfolding were found to be low, 2.6 kcal/mol by Gdn·HCl denaturation experiments, as compared to 12 kcal/mol obtained for larger single domain proteins, indicating poor stability of SH3 domain. Addition of 500 mM of Na2SO4 increased the free energy change ΔG to 4.0 kcal/mol, suggesting an ionic strength effect. The truncated peptide fails to fold correctly and adopts random coil conformation in contrast to 58 amino acid β-barrel peptide, which exhibits high thermal stability but normal or low stability at ambient temperature. These results, to our knowledge the first to delineate the importance of C-terminal in structural integrity of SH3 domains, indicate also that improper folding and/or poor stability of mutant SH3 domain in BTK likely causes XLA. Proteins 28:465–471 © 1996 Wiley-Liss, Inc.  相似文献   

2.
X-linked agammaglobulinemia (XLA), an inherited disease, is caused by mutations in the Bruton's tyrosine kinase (BTK). The absence of functional BTK leads to failure of B cell differentiation which incapacitates antibody production in XLA patients leading to, sometimes lethal, bacterial infections. Point mutation in the BTK gene that leads to deletion of C-terminal 14 aa residues of BTK SH3 domain was found in one patient family. To understand the role of BTK in B cell development, we have determined the solution structure of BTK SH3 domain complexed with a proline-rich peptide from the protein product of c-cbl protooncogene (p120cbl). Like other SH3 domains, BTK SH3 domain consists of five -strands packed in two -sheets forming a -barrel-like structure. The rmsd calculated from the averaged coordinates for the BTK SH3 domain residues 218–271 and the p120cbl peptide residues 6–12 of the complex was 0.87 Å (±0.16 Å) for the backbone heavy atoms (N, C, and C) and 1.64 Å (±0.16 Å) for all heavy atoms. Based on chemical shift changes and inter-molecular NOEs, we have found that the residues located in the RT loop, n-Src loop and helix-like loop between 4 and 5 of BTK SH3 domain are involved in ligand binding. We have also determined that the proline-rich peptide from p120cbl binds to BTK SH3 domain in a class I orientation. These results correlate well with our earlier observation that the truncated BTK SH3 domain (deletion of 4, 5 and the helix-like loop) exhibits weaker affinity for the p120cbl peptide. It is likely that the truncated SH3 domain fails to present to the ligand the crucial residues in the correct context and hence the weaker binding. These results delineate the importance of the C-terminus in the binding of SH3 domains and also indicate that improper folding and the altered binding behavior of mutant BTK SH3 domain likely lead to XLA.  相似文献   

3.
Interaction between Btk TH and SH3 domain   总被引:1,自引:0,他引:1  
Okoh MP  Vihinen M 《Biopolymers》2002,63(5):325-334
Several mechanisms are involved in the regulation of cellular signaling. Bruton tyrosine kinase (Btk) of the Tec family contains in the Tec homology (TH) domain a proline-rich region (PRR) capable of interacting with several SH3 domains. The Btk has the SH3 domain adjacent to the TH domain. CD and fluorescence spectroscopy were used to study the binding of two peptides corresponding to segments in the PRR to the Btk SH3 domain. The peptide for the N-terminal half of the PRR binds specifically, whereas the other peptide had hardly any affinity. The TH domain has about four times lower affinity to the SH3 domain than the peptide, 17.0 vs 3.9 microM. The interaction was further tested with an SH3 domain construct that contained the PRR. The two peptides cannot compete for the binding to the extended protein and the TH domain has two times lower affinity to the extended SH3 domain. The intra- or intermolecular interaction between the TH and SH3 domain might have regulatory function also in the other Tec family members.  相似文献   

4.
The SH3 domain of Bruton's tyrosine kinase (Btk) is preceded by the Tec homology (TH) region containing proline-rich sequences. We have studied a protein fragment containing both the Btk SH3 domain and the proline-rich sequences of the TH region (PRR-SH3). Intermolecular NMR cross-relaxation measurements, gel permeation chromatography profiles, titrations with proline-rich peptides, and (15)N NMR relaxation measurements are all consistent with a monomer-dimer equilibrium with a dissociation constant on the order of 60 microM. The intermolecular interactions do, at least in part, involve proline-rich sequences in the TH region. This behavior of Btk PRR-SH3 may have implications for the functional action of Btk.  相似文献   

5.
The Crk-associated tyrosine kinase substrate p130cas (CAS) is a docking protein containing an SH3 domain near its N terminus, followed by a short proline-rich segment, a large central substrate domain composed of 15 repeats of the four amino acid sequence YxxP, a serine-rich region and a carboxy-terminal domain, which possesses consensus binding sites for the SH2 and SH3 domains of Src (YDYV and RPLPSPP, respectively). The SH3 domain of CAS mediates its interaction with several proteins involved in signaling pathways such as focal adhesion kinase (FAK), tyrosine phosphatases PTP1B and PTP-PEST, and the guanine nucleotide exchange factor C3G. As a homolog of the corresponding Src docking domain, the CAS SH3 domain binds to proline-rich sequences (PxxP) of its interacting partners that can adopt a polyproline type II helix. We have determined a high-resolution X-ray structure of the recombinant human CAS SH3 domain. The domain, residues 1-69, crystallized in two related space groups, P2(1) and C222(1), that provided diffraction data to 1.1 A and 2.1 A, respectively. The crystal structure shows, in addition to the conserved SH3 domain architecture, the way in which the CAS characteristic amino acids form an atypically charged ligand-binding surface. This arrangement provides a rationale for the unusual ligand recognition motif exhibited by the CAS SH3 domain. The structure enables modelling of the docking interactions to its ligands, for example from focal adhesion kinase, and supports structure-based drug design of inhibitors of the CAS-FAK interaction.  相似文献   

6.
We have determined the thermodynamic stability and peptide binding affinity of the carboxy-terminal Src homology 3 (SH3) domain from the Caenorhabditis elegans signal-transduction protein Sem-5. Despite its small size (62 residues) and lack of disulfide bonds, this domain is highly stable to thermal denaturation--at pH 7.3, the protein has a Tm of 73.1 degrees C. Interestingly, the protein is not maximally stable at neutral pH, but reaches a maximum at around pH 4.7 (Tm approximately equal to 80 degrees C). Increasing ionic strength also stabilizes the protein, suggesting that 1 or more carboxylate ions are involved in a destabilizing electrostatic interaction. By guanidine hydrochloride denaturation, the protein is calculated to have a free energy of unfolding of 4.1 kcal/mol at 25 degrees C. We have also characterized binding of the domain to 2 different length proline-rich peptides from the guanine nucleotide exchange factor, Sos, one of Sem-5's likely physiological ligands in cytoplasmic signal transduction. Upon binding, these peptides cause about a 2-fold increase in fluorescence intensity. Both bind with only modest affinities (Kd approximately equal to 30 microM), lower than some previous estimates for SH3 domains. By fluorescence, the domain also appears to associate with the homopolymer poly-L-proline in a similar fashion.  相似文献   

7.
Summary The solution structure of the SH3 domain of human p56 Lck tyrosine kinase (Lck-SH3) has been determined by multidimensional heteronuclear NMR spectroscopy. The structure was calculated from a total of 935 experimental restraints comprising 785 distance restraints derived from 1017 assigned NOE cross peaks and 150 dihedral angle restraints derived from 160 vicinal coupling constants. A novel combination of the constant-time 1H–13C NMR correlation experiment recorded with various delays of the constant-time refocusing delays and a fractionally 13C-labelled sample was exploited for the stereo-specific assignment of prochiral methyl groups. Additionally, 28 restraints of 14 identified hydrogen bonds were included. A family of 25 conformers was selected to characterize the solution structure. The average root-mean-square deviations of the backbone atoms (N, C, C, O) among the 25 conformers is 0.42 Å for residues 7 to 63. The N- and C-terminal residues, 1 to 6 and 64 to 81, are disordered, while the well-converged residues 7 to 63 correspond to the conserved sequences of other SH3 domains. The topology of the SH3 structure comprises five anti-parallel -strands arranged to form two perpendicular -sheets, which are concave and twisted in the middle part. The overall secondary structure and the backbone conformation of the core -strands are almost identical to the X-ray structure of the fragment containing the SH2-SH3 domains of p56 Lck [Eck et al. (1994) Nature, 368, 764–769]. The X-ray structure of the SH3 domain in the tandem SH2-SH3 fragment is spatially included within the ensemble of the 25 NMR conformers, except for the segment of residues 14 to 18, which makes intermolecular contacts with an adjacent SH2 molecule and the phosphopeptide ligand in the crystal lattice. Local structural differences from other known SH3 domains are also observed, the most prominent of which is the absence in Lck-SH3 of the two additional short -strands in the regions Ser15 to Glu17 and Gly25 to Glu27 flanking the so-called RT-Src loop. This loop (residues Glu17 to Leu24), together with the n-Src loop (residues Gln37 to Ser46) confines the ligand interaction site which is formed by a shallow patch of hydrophobic amino acids (His14, Tyr16, Trp41, Phe54 and Phe59). Both loops are flexible and belong to the most mobile regions of the protein, which is assessed by the heteronuclear 15N,1H-NOE values characterizing the degree of internal backbone motions. The aromatic residues of the ligand binding site are arranged such that they form three pockets for interactions with the polyproline ligand.Abbreviations CT constant time - HSQC heteronuclear single-quantum coherence - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy - SH2 Src homology domain 2 - SH3 Src homology domain 3  相似文献   

8.
WW and SH3 domains, two different scaffolds to recognize proline-rich ligands   总被引:15,自引:0,他引:15  
WW domains are small protein modules composed of approximately 40 amino acids. These domains fold as a stable, triple stranded beta-sheet and recognize proline-containing ligands. WW domains are found in many different signaling and structural proteins, often localized in the cytoplasm as well as in the cell nucleus. Based on analyses of seven structures of WW domains, we discuss their diverse binding preferences and sequence conservation patterns. While modeling WW domains for which structures have not been determined we uncovered a case of potential molecular and functional convergence between WW and SH3 domains. The binding surface of the modeled WW domain of Npw38 protein shows a remarkable similarity to the SH3 domain of Sem5 protein, confirming biochemical data on similar binding predilections of both domains.  相似文献   

9.
SH3 domains from the Src family of tyrosine kinases represent an interesting example of the delicate balance between promiscuity and specificity characteristic of proline-rich ligand recognition by SH3 domains. The development of inhibitors of therapeutic potential requires a good understanding of the molecular determinants of binding affinity and specificity and relies on the availability of high quality structural information. Here, we present the first high-resolution crystal structure of the SH3 domain of the c-Yes oncogen. Comparison with other SH3 domains from the Src family revealed significant deviations in the loop regions. In particular, the n-Src loop, highly flexible and partially disordered, is stabilized in an unusual conformation by the establishment of several intramolecular hydrogen bonds. Additionally, we present here the first report of amyloid aggregation by an SH3 domain from the Src family.  相似文献   

10.
A number of the chimeric constructs with spectrin SH3 domain were designed for structural and thermodynamic studies of protein self-assembly and protein-ligand interactions. SH3 domains, components of many regulatory proteins, operate through weak interactions with proline-rich regions of polypeptide chains. The recombinant construct (WT-CIIA) studied in this work was constructed by linking the peptide ligand PPPVPPYSAG to the domain C-terminus via a long 12-residue linker to increase the affinity of this ligand for the spectrin domain, thereby ensuring a stable positioning of the polyproline helix to the conserved ligand-binding site in orientation II, which is regarded as untypical of the interaction between this domain and oligopeptides. A comparison of fluorescence spectra of the initial domain and the recombinant protein WT-CIIA suggests that the ligand sticks to the conservative binding site. However, analysis of the equilibrium urea-induced unfolding has demonstrated that this is an unstable contact, which leads to a two-stage unfolding of the chimeric protein. The protein WT-CIIA was crystallized; a set of X-ray diffraction data with a resolution of 1.75 Å was recorded from individual crystals. A preliminary analysis of these diffraction data has demonstrated that the crystals belong to space group P32 with the following unit cell parameters: a = b = 36.39, c = 112.17 Å, a = β = 90.0, and γ = 120.0.  相似文献   

11.
Myosins play essential roles in migration, cytokinesis, endocytosis, and adhesion. They are composed of a large N-terminal motor domain with ATPase and actin binding sites and C-terminal neck and tail regions, whose functional roles and structural context in the protein are less well characterized. The tail regions of myosins I, IV, VII, XII, and XV each contain a putative SH3 domain that may be involved in protein-protein interactions. SH3 domains are reported to bind proline-rich motifs, especially "PxxP" sequences, and such interactions serve regulatory functions. The activity of Src, PI3, and Itk kinases, for example, is regulated by intramolecular interactions between their SH3 domain and internal proline-rich sequences. Here, we use NMR spectroscopy to reveal the structure of a protein construct from Dictyostelium myosin VII (DdM7) spanning A1620-T1706, which contains its SH3 domain and adjacent proline-rich region. The SH3 domain forms the signature beta-barrel architecture found in other SH3 domains, with conserved tryptophan and tyrosine residues forming a hydrophobic pocket known to bind "PxxP" motifs. In addition, acidic residues in the RT or n-Src loops are available to interact with the basic anchoring residues that are typically found in ligands or proteins that bind SH3 domains. The DdM7 SH3 differs in the hydrophobicity of the second pocket formed by the 3(10) helix and following beta-strand, which contains polar rather than hydrophobic side chains. Most unusual, however, is that this domain binds its adjacent proline-rich region at a surface remote from the region previously identified to bind "PxxP" motifs. The interaction may affect the orientation of the tail without sacrificing the availability of the canonical "PxxP"-binding surface.  相似文献   

12.
X-linked agammaglobulinemia (XLA) is caused by mutations in the Bruton's tyrosine kinase (Btk). The absence of functional Btk leads to failure of B-cell development that incapacitates antibody production in XLA patients leading to recurrent bacterial infections. Btk SH2 domain is essential for phospholipase C-gamma phosphorylation, and mutations in this domain were shown to cause XLA. Recently, the B-cell linker protein (BLNK) was found to interact with the SH2 domain of Btk, and this association is required for the activation of phospholipase C-gamma. However, the molecular basis for the interaction between the Btk SH2 domain and BLNK and the cause of XLA remain unclear. To understand the role of Btk in B-cell development, we have determined the stability and peptide binding affinity of the Btk SH2 domain. Our results indicate that both the structure and stability of Btk SH2 domain closely resemble with other SH2 domains, and it binds with phosphopeptides in the order pYEEI > pYDEP > pYMEM > pYLDL > pYIIP. We expressed the R288Q, R288W, L295P, R307G, R307T, Y334S, Y361C, L369F, and 1370M mutants of the Btk SH2 domain identified from XLA patients and measured their binding affinity with the phosphopeptides. Our studies revealed that mutation of R288 and R307 located in the phosphotyrosine binding site resulted in a more than 200-fold decrease in the peptide binding compared to L295, Y334, Y361, L369, and 1370 mutations in the pY + 3 hydrophobic binding pocket (approximately 3- to 17-folds). Furthermore, mutation of the Tyr residue at the betaD5 position reverses the binding order of Btk SH2 domain to pYIIP > pYLDL > pYDEP > pYMEM > pYEEI. This altered binding behavior of mutant Btk SH2 domain likely leads to XLA.  相似文献   

13.
The p21-activated kinases (PAKs) are important effector proteins of the small GTPases Cdc42 and Rac and control cytoskeletal rearrangements and cell proliferation. The direct interaction of PAKs with guanine nucleotide exchange factors from the PIX/Cool family, which is responsible for the localization of PAK kinases to focal complexes in the cell, is mediated by a 24-residue peptide segment in PAKs and an N-terminal src homology 3 (SH3) domain in PIX/Cool. The SH3-binding segment of PAK contains the atypical consensus-binding motif PxxxPR, which is required for unusually high affinity binding. In order to understand the structural basis for the high affinity and specificity of the PIX-PAK interaction, we solved crystal structures for the N-terminal SH3 domain of betaPIX and for the complex of the atypical binding segment of PAK2 with the N-terminal SH3 domain of betaPIX at 0.92 A and 1.3A resolution, respectively. The asymmetric unit of the crystal contains two SH3 domains and two peptide ligands. The bound peptide adopts a conformation that allows for intimate contacts with three grooves on the surface of the SH3 domain that lie between the n-Src and RT-loops. Most notably, the arginine residue of the PxxxPR motif forms a salt-bridge and is tightly coordinated by a number of residues in the SH3 domain. This arginine-specific interaction appears to be the key determinant for the high affinity binding of PAK peptides. Furthermore, C-terminal residues of the peptide engage in additional interactions with the surface of the RT-loop, which significantly increases binding specificity. Compared to a recent NMR structure of a similar complex, our crystal structure reveals an alternate binding mode. Finally, we compare our crystal structure with the recently published betaPIX/Cbl-b complex structure, and suggest the existence of a molecular switch.  相似文献   

14.
Overexpression of the ErbB2 receptor tyrosine kinase is associated with most aggressive tumors in breast cancer patients and is thus one of the main investigated therapeutic targets. Human ErbB2 C-terminal domain is an unstructured anchor that recruits specific adaptors for signaling cascades resulting in cell growth, differentiation and migration. Herein, we report the presence of a SH3 binding motif in the proline rich unfolded ErbB2 C-terminal region. NMR analysis of this motif supports a PPII helix conformation and the binding to Fyn-SH3 domain. The interaction of a kinase of the Src family with ErbB2 C-terminal domain could contribute to synergistic intracellular signaling and enhanced oncogenesis.  相似文献   

15.
The Caenorhabditis elegans SEM-5 SH3 domains recognize proline-rich peptide segments with modest affinity. We developed a bivalent peptide ligand that contains a naturally occurring proline-rich binding sequence, tethered by a glycine linker to a disulfide-closed loop segment containing six variable residues. The glycine linker allows the loop segment to explore regions of greatest diversity in sequence and structure of the SH3 domain: the RT and n-Src loops. The bivalent ligand was optimized using phage display, leading to a peptide (PP-G(4)-L) with 1000-fold increased affinity for the SEM-5 C-terminal SH3 domain over that of a natural ligand. NMR analysis of the complex confirms that the peptide loop segment is targeted to the RT and n-Src loops and parts of the beta-sheet scaffold of this SH3 domain. This binding region is comparable to that targeted by a natural non-PXXP peptide to the p67(phox) SH3 domain, a region not known to be targeted in the Grb2 SH3 domain family. PP-G(4)-L may aid in the discovery of additional binding partners of Grb2 family SH3 domains.  相似文献   

16.
Nebulin, a giant modular protein from muscle, is thought to act as a molecular ruler in sarcomere assembly. The C terminus of nebulin, located in the sarcomere Z-disk, comprises an SH3 domain, a module well known for its role in protein/protein interactions. SH3 domains are known to recognize proline-rich ligands, which have been classified as type I or type II, depending on their relative orientation with respect to the SH3 domain in the complex formed. Type I ligands are bound with their N terminus at the RT loop of the SH3 domain, while type II ligands are bound with their C terminus at the RT loop. Many SH3 domains can bind peptides of either class. Despite the potential importance of the SH3 domain for the function of nebulin as an integral part of a complex network of interactions, no in vivo partner has been identified so far. We have adopted an integrated approach, which combines bioinformatic tools with experimental validation to identify possible partners of nebulin SH3. Using the program SPOT, we performed an exhaustive screening of the muscle sequence databases. This search identified a number of potential nebulin SH3 partners, which were then tested experimentally for their binding affinity. Synthetic peptides were studied by both fluorescence and NMR spectroscopy. Our results show that nebulin SH3 domain binds selectively to type II peptides. The affinity for a type II peptide, 12 residues long, spanning the sequence of a stretch of titin known to colocalise with nebulin in the Z-disk is in the submicromolar range (0.7 microM). This affinity is among the highest found for SH3/peptide complexes, suggesting that the identified stretch could have significance in vivo. The strategy outlined here is of more general applicability and may provide a valuable tool to identify potential partners of SH3 domains and of other peptide-binding modules.  相似文献   

17.
Guanidinium hydrochloride (GuHCl) at low concentrations significantly stabilizes the Fyn SH3 domain. In this work, we have demonstrated that this stabilizing effect is manifested through a dramatic (five- to sixfold) decrease in the unfolding rate of the domain with the folding rate being affected minimally. This behavior contrasts to the effect of NaCl, which stabilizes this domain by accelerating the folding rate. These data imply that the stabilizing effect of GuHCl is not predominantly ionic in nature. Through NMR studies, we have identified a specific binding site for guanidinium, and we have determined a dissociation constant of 90 mM for this interaction. The guanidinium-binding site overlaps with a functionally important arginine-binding pocket on the domain surface, and we have shown that GuHCl is a specific inhibitor of the peptide-binding activity of the domain. A different SH3 domain possessing a similar arginine-binding pocket is also thermodynamically stabilized by GuHCl. These data suggest that many proteins that normally interact with arginine-containing ligands may also be able to specifically interact with guanidinium. Thus, some caution should be used when using GuHCl as a denaturant in protein folding studies. Since arginine-mediated interactions are often important in the energetics of protein-protein interactions, our observations could be relevant for the design of small molecule inhibitors of protein-protein interactions.  相似文献   

18.
The inhibition of the interactions between SH3 domains and their targets is emerging as a promising therapeutic strategy. To date, rational design of potent ligands for these domains has been hindered by the lack of understanding of the origins of the binding energy. We present here a complete thermodynamic analysis of the binding energetics of the p41 proline-rich decapeptide (APSYSPPPPP) to the SH3 domain of the c-Abl oncogene. Isothermal titration calorimetry experiments have revealed a thermodynamic signature for this interaction (very favourable enthalpic contributions opposed by an unfavourable binding entropy) inconsistent with the highly hydrophobic nature of the p41 ligand and the Abl-SH3 binding site. Our structural and thermodynamic analyses have led us to the conclusion, having once ruled out any possible ionization events or conformational changes coupled to the association, that the establishment of a complex hydrogen-bond network mediated by water molecules buried at the binding interface is responsible for the observed thermodynamic behaviour. The origin of the binding energetics for proline-rich ligands to the Abl-SH3 domain is further investigated by a comparative calorimetric analysis of a set of p41-related ligands. The striking effects upon the enthalpic and entropic contributions provoked by conservative substitutions at solvent-exposed positions in the ligand confirm the complexity of the interaction. The implications of these results for rational ligand design are discussed.  相似文献   

19.
Src homology 2 (SH2) domains mediate phosphotyrosine (pY)-dependent protein:protein interactions involved in signal transduction pathways. We have found that the SH2 domains of the 85-kDa alpha subunit (p85) of phosphatidylinositol 3-kinase (PI3 kinase) bind directly to the serine/threonine kinase A-Raf. In this report we show that the p85 SH2:A-Raf interaction is phosphorylation-independent. The affinity of the p85 C-SH2 domain for A-Raf and phosphopeptide pY751 was similar, raising the possibility that a p85:A-Raf complex may play a role in the coordinated regulation of the PI3 kinase and Raf-MAP kinase pathways. We further show that the p85 C-SH2 domain contains two distinct binding sites for A-Raf; one overlapping the phosphotyrosine-dependent binding site and the other a separate phosphorylation-independent site. This is the first evidence for a second binding site on an SH2 domain, distinct from the phosphotyrosine-binding pocket.  相似文献   

20.
Adhesion and degranulation-promoting adapter protein (ADAP) is critically involved in downstream signalling events triggered by the activation of the T cell receptor. Cytokine production, proliferation and integrin clustering of T cells are dependent on ADAP function, but the molecular basis for these processes is poorly understood. We now show the hSH3 domain of ADAP to be a lipid-interaction module that binds to acidic lipids, including phosphatidylinositides. Positively charged surface patches of the domain preferentially bind to polyvalent acidic lipids such as PIP2 or PIP3 over the monovalent PS phospholipid and this interaction is dependent on the N-terminal helix of the hSH3 domain fold. Basic amino acid side-chains from the SH3 scaffold also contribute to lipid binding. In the context of T cell signalling, our findings suggest that ADAP, upon recruitment to the cell-cell junction as part of a multiprotein complex, directly interacts with phosphoinositide-enriched regions of the plasma membrane. Furthermore, the ADAP lipid interaction defines the helically extended SH3 scaffold as a novel member of membrane interaction domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号