首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
鸡嗉果榕榕小蜂产卵时序与种群数量分析   总被引:3,自引:0,他引:3  
榕树与传粉榕小蜂的互惠共生体系被多种非传粉榕小蜂利用。在同一个榕果中,具有较高种群密度的传粉榕小蜂和多种非传粉榕小蜂生存在一起并相互作用。通过野外观察和采样分析的方法,对鸡嗉果榕内5种榕小蜂(传粉榕小蜂Ceratosolen gravelyi;非传粉榕小蜂Apocrypta sp., Philotrypesis dunia, Platyneura cuniaSycoscaptertr ifemmensis)的产卵行为进行了研究。结果证明,鸡嗉果榕内生活的各种榕小蜂通过比较严格的产卵时序在榕果内产卵以占领不同的生态位,这反映了这些榕小蜂各自的生物学特性。自然种群数量分析表明,单个非传粉榕小蜂物种的种群数量几乎不与传粉榕小蜂种群数量呈负相关,而所有非传粉榕小蜂物种的种群个体总量与传粉榕小蜂的种群个体数呈正相关,这可能是多个物种共存于单个榕果内的进化适应。  相似文献   

2.
Endophytic insects and their parasitoids provide valuable models for community ecology. The wasp communities in inflorescences of fig trees have great potential for comparative studies, but we must first describe individual communities. Here, we add to the few detailed studies of such communities by describing the one associated with Ficus rubiginosa in Australia. First, we describe community composition, using two different sampling procedures. Overall, we identified 14 species of non-pollinating fig wasp (NPFW) that fall into two size classes. Small wasps, including pollinators, gallers and their parasitoids, were more abundant than large wasps (both galler and parasitoid species). We show that in figs where wasps emerge naturally, the presence of large wasps may partly explain the low emergence of small wasps. During fig development, large gallers oviposit first, before and around the time of pollination, while parasitoids lay eggs after pollination. We further show that parasitoids in the subfamily Sycoryctinae, which comprise the majority of all individual NPFWs, segregate temporally by laying eggs at different stages of fig development. We discuss our results in terms of species co-existence and community structure and compare our findings to those from fig wasp communities on other continents.  相似文献   

3.
Fig trees are pollinated by wasp mutualists, whose larvae consume some of the plant's ovaries. Many fig species (350+) are gynodioecious, whereby pollinators generally develop in the figs of ‘male’ trees and seeds generally in the ‘females.’ Pollinators usually cannot reproduce in ‘female’ figs at all because their ovipositors cannot penetrate the long flower styles to gall the ovaries. Many non-pollinating fig wasp (NPFW) species also only reproduce in figs. These wasps can be either phytophagous gallers or parasites of other wasps. The lack of pollinators in female figs may thus constrain or benefit different NPFWs through host absence or relaxed competition. To determine the rates of wasp occurrence and abundance we surveyed 11 dioecious fig species on Hainan Island, China, and performed subsequent experiments with Ficus tinctoria subsp. gibbosa to identify the trophic relationships between NPFWs that enable development in female syconia. We found NPFWs naturally occurring in the females of Ficus auriculata, Ficus hainanensis and F. tinctoria subsp. gibbosa. Because pollinators occurred only in male syconia, when NPFWs also occurred in female syconia, overall there were more wasps in male than in female figs. Species occurrence concurred with experimental data, which showed that at least one phytophagous galler NPFW is essential to enable multiple wasp species to coexist within a female fig. Individuals of galler NPFW species present in both male and female figs of the same fig species were more abundant in females than in males, consistent with relaxed competition due to the absence of pollinator. However, these wasps replaced pollinators on a fewer than one-to-one basis, inferring that other unknown mechanisms prevent the widespread exploitation by wasps of female figs. Because some NPFW species may use the holes chewed by pollinator males to escape from their natal fig, we suggest that dispersal factors could be involved.  相似文献   

4.
Insects show a multitude of symbiotic interactions that may vary in degree of specialization and structure. Gall-inducing insects and their parasitoids are thought to be relatively specialized organisms, but despite their ecological importance, the organization and structure of the interactions they establish with their hosts has seldom been investigated in tropical communities. Non-pollinating fig wasps (NPFW) are particularly interesting organisms for the study of ecological networks because most species strictly develop their offspring within fig inflorescences, and show a multitude of life history strategies. They can be gall-makers, cleptoparasites or parasitoids of pollinating or of other non-pollinating fig wasps. Here we analysed a set of non-pollinating fig wasp communities associated with six species of Ficus section Americanae over a wide area. This allowed us to investigate patterns of specialization in a diverse community composed of monophagous and polyphagous species. We observed that most NPFW species were cleptoparasites and parasitoids, colonizing figs several days after oviposition by pollinators. Most species that occurred in more than one host were much more abundant in a single preferential host, suggesting specialization. The food web established between wasps and figs shows structural properties that are typical of specific antagonistic relationships, especially of endophagous insect networks. Two species that occurred in all available hosts were highly abundant in the network, suggesting that in some cases generalized species can be more competitive than strict specialists. The Neotropical and, to a lesser extent, Afrotropical NPFW communities seem to be more generalized than other NPFW communities. However, evidence of host sharing in the Old World is quite limited, since most studies have focused on particular taxonomic groups (genera) of wasps instead of sampling the whole NPFW community. Moreover, the lack of quantitative information in previous studies prevents us from detecting patterns of host preferences in polyphagous species.  相似文献   

5.
1. Fig trees (Moraceae: Ficus) are keystone species, whose ecosystem function relies on an obligate mutualism with wasps (Chalcidoidea: Agaonidae) that enter fig syconia to pollinate. Each female flower produces one seed (fig female reproductive function), unless it also receives a wasp egg, in which case it supports a wasp. Fig male reproductive function requires both male flowers and pollinator offspring, which are the only vectors of fig pollen. 2. The mutualism is exploited by other wasps that lay eggs but provide no pollination service. Most of these non‐pollinating fig wasps (NPFWs) do not enter syconia, but lay eggs through the wall with long ovipositors. Some are gall‐makers, while others are parasitoids or lethal inquilines of other wasps. 3. Ficus is pan‐tropical and contains >750 fig species. However, NPFW communities vary across fig lineages and continents and their effects on the mutualism may also vary. This provides a series of natural experiments to investigate how the costs to a keystone mutualism vary geographically. 4. We made the first detailed study of the costs of NPFWs in a fig (Ficus obliqua G. Forst) from the endemic Australasian section Malvanthera. In contrast to the communities associated with section Americana in the New World, wasps from the subfamily Sycoryctinae (Chalcidoidea: Pteromalidae) dominated this community. 5. These sycoryctine wasps have a negative impact on pollinator offspring numbers, but not on seed production. Consequently, while the NPFW fauna varies greatly at high taxonomic levels across continents, we show that the consistent main effect of locally dominant exploiters of the mutualism is to reduce fig male reproductive function.  相似文献   

6.
Mutualisms involve cooperation between species and underpin several ecosystem functions. However, there is also conflict between mutualists, because their interests are not perfectly aligned. In addition, most mutualisms are exploited by parasites. Here, we study the interplay between cooperation, conflict and parasitism in the mutualism between fig trees and their pollinator wasps. Conflict occurs because each fig ovary can nurture either one seed or one pollinator offspring and, while fig trees benefit directly from seeds and pollinator offspring (pollen vectors), pollinators only benefit directly from pollinator offspring. The mechanism(s) of conflict resolution is debated, but must explain the widespread observation that pollinators develop in inner, and seeds in outer, layers of fig flowers. We recently suggested a role for non‐pollinating figs wasps (NPFWs) that are natural enemies or competitors of the pollinators and lay their eggs through the fig wall. Most NPFW offspring develop in outer and middle layer flowers, suggesting that inner flowers provide enemy‐free space for pollinator offspring. Here, we test the hypothesis that NPFWs cannot reach inner flowers, by measuring wasp and fig morphology at the species‐specific times of NPFW attack in the field. We found that three species of Sycoscapter and Philotrypesis wasps that parasitise pollinators could reach 34–73%, 75–92% and 82–97% of fig ovaries, respectively. Meanwhile, Eukobelea and Pseudidarnes gall‐formers, despite having shorter ovipositors, can access almost all fig flowers (93–99% and 100%), because they attack smaller (younger) fig fruits. Our mechanistic results from ovipositing wasps support spatial patterns of wasp offspring segregation within figs to suggest that inner ovules provide enemy‐free‐space for pollinators. This may contribute to mutualism stability by helping select for pollinators to avoid laying eggs where they are likely to be parasitised. These outer flowers then remain free to develop as seeds, promoting mutualism persistence.  相似文献   

7.
群落中的物种相互作用构成了复杂的生态网络。有关物种的数量和组成的季节性动态变化已有较多的研究, 但是对于生态网络的动态变化知之甚少。揭示生态网络的动态变化对于理解群落的稳定性以及群落的动态变化过程和机理具有重要意义。本研究以垂叶榕(Ficus benjamina)榕小蜂群落为研究对象, 分别在西双版纳的干季和雨季采集了榕小蜂的种类和数量信息。比较了两个季节榕小蜂群落的动态变化以及共存网络的参数(例如网路直径、连接数、嵌套性和群落矩阵温度)变化。结果显示: 雨季榕果内传粉榕小蜂Eupristina koningsbergeri所占比例高于干季, 传粉榕小蜂的种群数量也高于干季, 而在干季非传粉榕小蜂的种类增加(干季15种小蜂, 雨季14种)。从榕树-传粉榕小蜂互利共生系统的适合度来看, 干季非传粉小蜂的增加对传粉榕小蜂和榕树的适合度是不利的。在干季, 共存网络物种间的连接数(干季0.95, 雨季0.47)多于雨季, 群落矩阵温度(干季23.24, 雨季2.64)也显著高于雨季。表明干季榕小蜂群落组成及种间关系较雨季更为复杂而多样, 高的矩阵温度暗示群落受到的干扰更大。  相似文献   

8.
9.
Ficus and their species–specific pollinator fig wasps represent an obligate plant–insect mutualism, but figs also support a community of non‐pollinating fig wasps (NPFWs) that consist of phytophages and parasitoids or inquilines. We studied interactions between Kradibia tentacularis, the pollinator of a dioecious fig tree species Ficus montana, and an undescribed NPFW Sycoscapter sp. Members of Sycoscapter sp. oviposited 2–4 weeks after pollinator oviposition, when host larvae were present in the figs. No negative correlation was found between the numbers of the two wasp species emerging from figs in a semi‐natural population. However, in experiments where the numbers of pollinator foundresses entering a fig were controlled, Sycoscapter sp. significantly reduced the numbers of pollinator offspring. Consequently, it can be concluded that Sycoscapter sp. is a parasitoid of K. tentacularis (which may also feed on plant tissue). Sycoscapter females concentrate their oviposition in figs that contain more potential hosts, rendering invalid conclusions based on simple correlations of host and natural enemy numbers.  相似文献   

10.
韦氏缩腹榕小蜂的产卵行为   总被引:3,自引:0,他引:3  
甄文全  黄大卫  杨大荣  朱朝东 《昆虫知识》2004,41(5):446-448,F004
通过对聚果榕上一种非传粉榕小蜂———韦氏缩腹小蜂ApocryptawestwoodiGrandi的产卵行为的详细观察 ,发现该小蜂的产卵行为与具有可伸缩的腹节这种奇特的腹部结构高度相关。该小蜂的产卵过程主要分为 3个阶段 :( 1 )寻找产卵位置 ,小蜂在果面快速搜索 ,以触角或口器触须感受产卵位点 ;( 2 )刺壁 ,小蜂将产卵针垂直于果面 ,刺入果壁 ,进入果腔 ;( 3 )产卵与拉出产卵针。通过与Ansari对于韦氏缩腹小蜂的产卵行为的描述进行比较 ,发现有如下不同之处 :( 1 )在产卵针刚刺入果面时 ,伸长的腹部末端超过头 ,整个伸长的腹部几乎与果面平行 ;( 2 )后足具有下拉产卵鞘的行为 ,并且后足除下拉产卵鞘时与果面分离外 ,均抓住果面 ;( 3 )产卵针不需要产卵鞘支撑时 ,产卵鞘与产卵针分离。  相似文献   

11.
12.
Male insects rarely collaborate with each other, but pollinator fig wasps (Hymenoptera: Agaonidae) are said to be an exception. Immature fig wasps feed on galled ovules located inside figs, the inflorescences of Ficus species (Moraceae). After mating, adult pollinator males chew communal exit-holes that allow mated females (which are often also their siblings) to escape. Figs also support non-pollinating fig wasps (NPFWs), some of which produce exit-holes independently. We determined whether collaboration between pollinator males (Kradibia tentacularis from Ficus montana) was necessary for the release of their females, and used the relationship between male numbers and likelihood of success to measure the extent of cooperation during exit-hole production. These attributes were then compared with those of an NPFW (Sycoscapter sp.) from the same host plant. Pollinators were more abundant than NPFW, but their more female-biased sex ratio meant male pollinator densities were only slightly higher. Individual males of both species could produce an exit-hole. Single males of the NPFW were just as successful as single male pollinators, but only male pollinators cooperated effectively, becoming more successful as their numbers increased. The lack of cooperation among NPFW may be linked to their earlier period of intense inter-male aggression.  相似文献   

13.
[目的]目前关于榕小蜂类群的线粒体基因组报道很少,本研究旨在探讨传粉和非传粉榕小蜂两个群体的线粒体基因组的进化差异.[方法]以15种榕小蜂的线粒体基因组(其中11种的线粒体基因组为新测定)数据为基础,采用比较线粒体基因组学方法,分析榕小蜂的线粒体基因组序列和进化特征.[结果]本研究新测定的11个榕小蜂物种的近全长线粒体...  相似文献   

14.
杨扬  王嵘  陈小勇 《生态学报》2023,43(11):4400-4410
榕属植物与其传粉小蜂组成了高度专一的专性共生关系(榕-蜂共生系统),如此高度紧密的互作关系被认为是驱动两者多样化的关键因素。榕-蜂共生系统主要依靠化学通讯完成相互识别,但目前仍不清楚化学通讯是如何维系现有共生关系并促进物种形成的。结合已有研究,系统梳理了榕-蜂共生系统化学通讯的基础与两者特异性识别的机制,阐述化学通讯在物种和种群层次对维持这一专性传粉关系的重要贡献,进而探讨化学通讯如何在协同成种和宿主转移成种两种模式中介导物种形成。最后,结合生理与多组学等技术展望榕-蜂共生系统的未来研究方向,为深入解析植物与昆虫协同进化的机制以及全球变化下物种的潜在响应模式提供重要参考。  相似文献   

15.
Mutualisms such as the fig–fig wasp mutualism are generally exploited by parasites. We demonstrate that amongst nonpollinating fig wasps (NPFWs) parasitic on Ficus citrifolia, a species of Idarnes galls flowers and another species feeds on galls induced by other wasps killing their larvae. The galling wasp inserts its ovipositor through the fig wall into the fig cavity. The ovipositor then follows a sinuous path and is introduced through the stigma and style of the flower. The egg is deposited between the integument and nucellus, in the exact location where the pollinating mutualistic wasp would have laid its egg. Gall induction is a complex process. In contrast, the path followed by the ovipositor of the other species is straightforward: attacking a larva within a developed gall poses different constraints. Shifts in feeding regime have occurred repeatedly in NPFWs. Monitoring traits associated with such repeated evolutionary shifts may help understand underlying functional constraints. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 114–122.  相似文献   

16.
1. Facilitation is recorded from diverse plant–insect interactions, including pollination and herbivory. 2. The significance of facilitation resulting from the behavior of males of multiple fig wasp species inside figs was investigated. Female fig wasps emerge from natal figs via exit holes dug by males, especially male pollinators. When no males are present, the females struggle to escape and may die. 3. Ficus microcarpa L. is a widely‐established invasive fig tree from Southeast Asia. Its pollinator is absent in South Africa, so the tree cannot reproduce, but two Asian non‐pollinating fig wasps (NPFW) Walkerella microcarpae and Odontofroggatia galili occupy its figs. Abundance patterns of the two NPFW and the proportion of male‐free figs in South Africa, Spain (where the pollinator is introduced), and in China, where the native fig wasp community is diverse, were compared to determine the consequences of reduced species richness for insect survival. 4. Female fig wasps in male‐free figs were found to be trapped, and small clutch sizes contributed to the absence of males in both species. The presence of pollinators in Spain allowed most NPFW to develop in figs containing males. Far more male‐free figs were present in South Africa, elevating mortality rates among female NPFW. Facilitation of female release by males of other NPFW species nonetheless benefitted the rarer species. 5. Selection pressures in South Africa currently favour greater aggregation of NPFW offspring and/or less female biased sex ratios.  相似文献   

17.
Figs (Ficus spp., Moraceae) and their pollinating wasps (Hymenoptera, Agaonidae, Chalcidoidea) constitute a classic example of an obligate plant-pollinator mutualism, and have become an ideal system for addressing questions on coevolution, speciation, and the maintenance of mutualisms. In addition to pollinating wasps, figs host several types of nonpollinating, parasitic wasps from a diverse array of Chalcid subfamilies with varied natural histories and ecological strategies (e.g. competitors, gallers, and parasitoids). Although a few recent studies have addressed the question of codivergence between specific genera of pollinating and nonpollinating fig wasps, no study has addressed the history of divergence of a fig wasp community comprised of multiple genera of wasps associated with a large number of sympatric fig hosts. Here, we conduct phylogenetic analyses of mitochondrial DNA sequences (COI) using 411 individuals from 69 pollinating and nonpollinating fig wasp species to assess relationships within and between five genera of fig wasps (Pegoscapus, Idarnes, Heterandrium, Aepocerus, Physothorax) associated with 17 species of New World Urostigma figs from section Americana. We show that host-switching and multiple wasp species per host are ubiquitous across Neotropical nonpollinating wasp genera. In spite of these findings, cophylogenetic analyses (TREEMAP 1.0, TREEMAP 2.02beta, and parafit) reveal evidence of codivergence among fig wasps from different ecological guilds. Our findings further challenge the classical notion of strict-sense coevolution between figs and their associated wasps, and mirror conclusions from detailed molecular studies of other mutualisms that have revealed common patterns of diffuse coevolution and asymmetric specialization among the participants.  相似文献   

18.
The ancient association of figs (Ficus spp.) and their pollinating wasps (fig wasps; Chalcidoidea, Hymenoptera) is one of the most interdependent plant–insect mutualisms known. In addition to pollinating wasps, a diverse community of organisms develops within the microcosm of the fig inflorescence and fruit. To better understand the multipartite context of the fig–fig wasp association, we used a culture-free approach to examine fungal communities associated with syconia of six species of Ficus and their pollinating wasps in lowland Panama. Diverse fungi were recovered from surface-sterilized flowers of all Ficus species, including gall- and seed flowers at four developmental stages. Fungal communities in syconia and on pollinating wasps were similar, dominated by diverse and previously unknown Saccharomycotina, and distinct from leaf- and stem endophyte communities in the same region. Before pollination, fungal communities were similar between gall- and seed flowers and among Ficus species. However, fungal communities differed significantly in flowers after pollination vs. before pollination, and between anciently diverged lineages of Ficus with active vs. passive pollination syndromes. Within groups of relatively closely related figs, there was little evidence for strict-sense host specificity between figs and particular fungal species. Instead, mixing of fungal communities among related figs, coupled with evidence for possible transfer by pollinating wasps, is consistent with recent suggestions of pollinator mixing within syconia. In turn, changes in fungal communities during fig development and ripening suggest an unexplored role of yeasts in the context of the fig–pollinator wasp mutualism.  相似文献   

19.
The high adaptive success of parasitic Hymenoptera might be related to the use of different oviposition sites, allowing niche partitioning among co-occurring species resulting in life history specialization and diversification. In this scenario, evolutionary changes in life history and resources for oviposition can be associated with changes in ovipositor structure, allowing exploitation of different substrates for oviposition. We used a formal phylogenetic framework to investigate the evolution of ovipositor morphology and life history in agaonid wasps. We sampled 24 species with different life histories belonging to all main clades of Agaonidae including representatives of all described genera of non-pollinating fig wasps (NPFW). Our results show an overall correlation between ovipositor morphology and life history in agaonid fig wasps. Ovipositor morphologies seem to be related to constraints imposed by features of the oviposition sites since ovipositor morphology has experienced convergent evolution at least four times in Sycophaginae (Agaonidae) according to the resource used. Non-galling species have more distantly spaced teeth with uneven spacing, as opposed to the observed morphology of galling species. Our results suggest that the ancestral condition for ovipositor morphology was most likely the presence of one or two apical teeth. Regarding life history, ovary galling species that oviposit in receptive figs possibly represent the ancestral condition. Different ovipositor characteristics allow exploitation of new niches and may be related to resource partitioning and species co-existence in the fig-fig wasp system.  相似文献   

20.
Yan X  Peng Y Q  Yang D R 《农业工程》2012,32(2):99-103
Sex ratio theory is one of the most productive fields in research on evolutionary biology. Pollinating fig wasps, due to their particular natural life history, are considered to be a valuable model for the study of sex ratio evolution. A great deal of research concerning the factors that affect pollinator fig wasp (Agaonidae) progeny sex ratio has been done, and at present three main factors (haplodiploidy, local mate competition and inbreeding) are found to be important at the population level. However, there still exists variation between empirical data and model predictions. Another factor to which little thought has been given before is the effect of non-pollinating fig wasps (NPFWs) which parasitize in the larvae gall of pollinator thus kill pollinators and exploit the fig/fig pollinator mutualistic systems. In this study, we focus on why and how non-pollinating fig wasps distort pollinator fig wasp’s original sex ratio. Through controlling the number of ovipositing foundresses inside a fig, combined with the observation of ovipositing behavior and sequence, we studied three species of wasp in the figs of a dioecious fig Ficus semicordata including the pollinator Ceratosolen gravely and NPFWs Platyneura cunia, Sycoscapter trifemmensis in tropical area of Xishuangbanna from September to December 2009. First, we observed the timing of oviposition of all fig wasps utilizing F. semicordata and found differences when compared to previous studies. Such as P. cunia is the fourth rather then the secondary fig wasps to oviposit on the syconia approximately 10 days after the pollinator. S. trifemmensis oviposits much earlier than previously thought, 14–32 days after the pollinators. We examined the spatial location of male and female progeny of the pollinator. We found foundresses of pollinator prefer to use innermost ovules first. Only at high offspring numbers were the outer ovules used. More male pollinator offspring were developed near the fig cavity, while female pollinator offspring were more evenly distributed among ovule layers. As pollinator offspring numbers increased, this phenomenon became more pronounced. This pattern of segregation of male larvae gall in inner ovules and female larvae gall in outer ovules suggests that female offspring might be more vulnerable to attack by parasitic wasps that oviposit from outside the syconium. Experiments later demonstrated that NPFWs are restricted by their ovipositor length and they prefer to or can only lay their eggs into ovules near the fig wall. Then we examined the spatial location of NPFWs and compared this with the spatial location of male/female progeny of pollinator. NPFWs had a high probability of parasitizing female pollinator larvae. Thus, NPFWs have a substantial effect on the sex ratio of the pollinator, as parasitism risk decreases towards the center of the syconium, where inner ovules provide enemy-free space for most of male pollinator offspring. Partial correlation analyse shows that sex ratio of pollinator progeny has a positive relationship with the number of NPFWs. We suggest that the resulting gradient in offspring viability between male and female contributes to selection on pollinators’ for a less femalebiased sex ratio. When the affect of NPFWs was excluded, the pollinator sex ratio was not in good agreement with local mate competition theory, although it was still female-biased. In addition, the average number of offspring per foundress decreased with increasing foundress number, but pollinator sex ratio was positively related to brood size. Thus, pollinator females do not appear to adjust their sex ratio to foundress density directly, but use brood size and foundress density simultaneously as cues to assess potential LMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号