首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of nickel (Ni) across the renal brush border membrane of the rainbow trout was examined in vitro using brush border membrane vesicles (BBMVs). Both transmembrane transport of Ni into an osmotically active intravesicular space, and binding of Ni to the brush border membrane itself, were confirmed. Nickel (Ni) uptake fitted a two component kinetic model. Saturable, temperature-dependent transport dominated at lower Ni concentrations, with a moderate linear diffusive component of Ni transport apparent at higher Ni concentrations. An affinity constant (Km) for Ni transport within the specifically described vesicular media was calculated as 17.9 ± 1.9 μM, the maximal rate of transport (Jmax) was calculated as 108.3 ± 3.7 nmol mg protein−1 min−1, and the slope of the linear diffusive component was calculated as 0.049 ± 0.005 nmol mg protein−1 min−1 per μM of Ni. Efflux of Ni from BBMVs was fitted to an exponential decay curve with a half-time (T1/2) of 125.2 ± 7.3 s. Ni uptake into renal BBMVs was inhibited by magnesium at a 100:1 Mg to Ni molar ratio, and by magnesium and calcium at a 1000:1 molar ratio. In the presence of histidine at a 100:1 histidine to Ni ratio, Ni uptake was almost completely abolished. At a 1:1 molar ratio, histidine inhibited Ni uptake by approximately 50%. Ni-histidine complexation was rapid, with a T1/2 of 12.2 s describing the Ni-histidine equilibration time needed to inhibit Ni uptake into renal BBMVs by 50%. Characterization of Ni transport across cellular membranes is an important step in understanding both the processes underlying homeostatic regulation of Ni, and the toxicological implications of excessive Ni exposure in aquatic ecosystems.  相似文献   

2.
Renal function was examined in adult rainbow trout (Oncorhynchus mykiss) after chronic exposure to a sublethal level of dietary Cd (500 mg/kg diet) for 52 d and during a subsequent challenge to waterborne Cd (10 microg/L) for 72 h. Dietary Cd had no major effects on UFR (urine flow rate) and GFR (glomerular filtration rate) but caused increased renal excretion of glucose, protein, and major ions (Mg(2+), Zn(2+), K(+), Na(+), Cl(-) but Ca(2+)). However, dietary Cd did not affect any plasma ions except Na(+) which was significantly elevated in the Cd-acclimated trout. Plasma glucose and ammonia levels fell by 25% and 36% respectively, but neither plasma nor urine urea was affected in Cd-acclimated fish. Dietary Cd exposure resulted in a remarkable increase of Cd load in the plasma (48-fold, approximately 22 ng/mL) and urine (60-fold, 8.9 ng/mL), but Cd excretion via the kidney was negligible on a mass-balance basis. Clearance ratio analysis indicates that all ions, Cd, and metabolites were reabsorbed strongly (58-100%) in both na?ve and dietary Cd exposed fish, except ammonia which was secreted in both groups. Mg(2+), Na(+), Cl(-) and K(+) reabsorption decreased significantly (3-15%) in the Cd-exposed fish relative to the control. Following waterborne Cd challenge, GFR and UFR were affected transiently, and only Mg(2+) and protein excretion remained elevated with no recovery with time in Cd-acclimated trout. Urinary Ca(2+) and Zn(2+) excretion rates dropped with an indication of renal compensation towards plasma declines of both ions. Cadmium challenge did not cause any notable effects on urinary excretion rates of metabolites. However, a significant decrease in Mg(2+) reabsorption but an increase in total ammonia secretion was observed in the Cd-acclimated fish. The study suggests that dietary Cd acclimation involves physiological costs in terms of renal dysfunction and elevated urinary losses.  相似文献   

3.
The objective of this study was to assess the effects of Cd and Zn exposure of rainbow trout (Oncorhynchus mykiss) on (a) hepatic glutathione (GSH) levels; and (b) hepatic and branchial metallothionein (MT) mRNA expression. Juvenile rainbow trout were exposed to waterborne Cd (nominal concentrations: 1.5 or 10 microg Cd l(-1)), Zn (150 or 1000 microg Zn l(-1)) or Cd/Zn mixtures (1.5 microg Cd l(-1) with 200 microg Zn l(-1) or 10 microg Cd l(-1) with 1000 microg Zn l(-1)). After 14 and 28 days of treatment, hepatic concentrations of total glutathione, oxidized glutathione (GSSG) and cysteine were determined by means of fluorometric high performance liquid chromatography (HPLC). Branchial and hepatic expression of MT mRNA was measured by means of semi-quantitative RT-PCR. Exposure of trout to Zn did not result in significantly elevated tissue levels of Zn, whereas Cd accumulation factors changed significantly with time and concentration. Despite of the absence of Zn accumulation, hepatic GSH but not MT mRNA levels were significantly altered in Zn-exposed fish. Cd, on the contrary, affected mainly the MT response but not GSH. Also tissue specific differences in the regulation of the two thiol pools were expressed. The thiol response after exposure to metal mixtures could not be explained by simple addition of the effects of the individual metals. The results indicate that cellular thiol pools show different reaction patterns with respect to specific metals and metal mixtures. Under conditions of long-term, low dose metal exposure, the function of GSH appears to go beyond that of a transitory, first line defense.  相似文献   

4.
Zinc is both a vital nutrient and an important toxicant to aquatic biota. In order to understand the interplay between nutrition and toxicity, it will be important to determine the mechanisms and the factors that regulate zinc uptake. The mechanism of apical intestinal Zn(II) uptake in freshwater rainbow trout and its potential modification by the complexing amino acid histidine was investigated using brush-border membrane vesicles (BBMVs). Following characterisation of the BBMV preparation, zinc uptake in the absence of histidine was both time- and concentration-dependent and consisted of two components. A saturable phase of uptake was described by an affinity constant of 57+/-17 microM and a transport capacity of 1867+/-296 nmol mg membrane protein(-1) min(-1). At higher zinc levels (>500 microM) a linear, diffusive component of uptake was evident. Zinc transport was also temperature-dependent, with Q10 values suggesting zinc uptake was a carrier-mediated process. Zinc uptake by vesicles in the presence of histidine was correlated to a mono-histidine species (Zn(His)+) at all Zn(II) concentrations examined.  相似文献   

5.
A suite of respiratory, acid-base, ionoregulatory, hematological, and stress parameters were examined in adult rainbow trout (Oncorhynchus mykiss) after chronic exposure to a sublethal level of dietary Cd (500 mg/kg diet) for 45 days and during a subsequent challenge to waterborne Cd (10 microg/L) for 72 h. Blood sampling via an indwelling arterial catheter revealed that dietary Cd had no major effects on blood gases, acid-base balance, and plasma ions (Ca(2+), Mg(2+), K(+), Na(+), and Cl(-)) in trout. The most notable effects were an increase in hematocrit (49%) and hemoglobin (74%), and a decrease in the plasma total ammonia (43%) and glucose (49%) of the dietary Cd-exposed fish relative to the nonexposed controls. Dietary Cd resulted in a 26-fold increase of plasma Cd level over 45 days (approximately 24 ng/mL). The fish exposed to dietary Cd showed acclimation with increased protection against the effects of waterborne Cd on arterial blood P(aCO2) and pH, plasma ions, and stress indices. After waterborne Cd challenge, nonacclimated fish, but not Cd-acclimated fish, exhibited respiratory acidosis. Plasma Ca(2+) levels declined from the prechallenge level, but the effect was more pronounced in nonacclimated fish (44%) than in Cd-acclimated fish (14%) by 72 h. Plasma K(+) was elevated only in the nonacclimated fish. Similarly, waterborne Cd caused an elevation of all four traditional stress parameters (plasma total ammonia, cortisol, glucose, and lactate) only in the nonacclimated fish. Thus, chronic exposure to dietary Cd protects rainbow trout against physiological stress caused by waterborne Cd and both dietary and waterborne Cd should be considered in determining the extent of Cd toxicity to fish.  相似文献   

6.
This study investigated the effects of dietary Ca2+ on branchial Ca2+ and Zn2+ uptake, new and total zinc accumulation in target tissues (gill, liver and kidney), calcium and zinc homeostasis, and acute tolerance to waterborne zinc in fish chronically exposed to waterborne zinc. Juvenile rainbow trout (Oncorhynchus mykiss) were maintained on a calcium-enriched diet [41.2 mg vs. 21.2 mg (control) calcium/g dry wt. of food] and chronic waterborne zinc exposure (2.3 micromol/L), both separately and in combination, for 28 days. Calcium-supplemented diet in the absence of waterborne zinc significantly reduced branchial Ca2+ and Zn2+ influx rates, and new and total zinc accumulations in target tissues relative to control. However it did not protect against the acute zinc challenge. In contrast, waterborne zinc exposure significantly increased branchial Ca2+ and Zn2+ influx rates, new and total zinc concentrations in target tissues, and acute zinc tolerance relative to control. Interestingly, no such changes in any of these parameters were recorded in fish treated simultaneously with elevated dietary Ca2+ and waterborne zinc, except acute zinc tolerance which was highest among all the treatments. Thus, we conclude that the interactions between elevated dietary Ca2+ and waterborne zinc can protect freshwater fish against waterborne zinc toxicity.  相似文献   

7.
The effects of elevated dietary calcium (as CaCO3) and acute waterborne Cd exposure (50 microg/l) on whole body uptake, tissue uptake, and internal distribution of newly accumulated Cd, Ca2+, and Na+ in juvenile rainbow trout were examined. Fish were fed with three diets (mg Ca2+/g food): 20 (control), 30 and 60 for 7 days before fluxes were measured with radiotracers. The highest dietary Ca2+ elevation reduced waterborne whole body Ca2+ uptake, but did not protect against inhibition of waterborne Ca2+ uptake by waterborne Cd. Both Ca2+-supplemented diets reduced newly accumulated Ca2+ in the gills in relation to the control treatment, but did not prevent the Cd-inhibiting effect against accumulation of new Ca2+ in most compartments. Fish fed with Ca2+-supplemented diets showed markedly lower rates of whole body uptake and internalization (in some tissues) of waterborne Cd, illustrating that, while dietary Ca2+ supplementation did not protect against the impact of waterborne Cd on waterborne Ca2+ uptake, it did protect against the uptake of Cd. Waterborne Cd had no effect on Na+ fluxes, total Cl-, and in most body compartments, newly accumulated Na+ and total Na+ were also not affected. Dietary supplementation with CaCO3 had the same protective effect as demonstrated by dietary supplementation with CaCl2 in an earlier study. Thus, the reduction of waterborne Cd uptake and internalization by dietary Ca2+ was specifically due to Ca2+ and not to the anion.  相似文献   

8.
Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to waterborne Cu (22 microg/l) in moderately hard water for up to 28 days. Relative to control fish kept at background Cu levels (2 microg/l), Cu-preexposed fish displayed decreased uptake rates of waterborne Cu via the gills but not of dietary Cu via the gut during 48-h exposures to (64)Cu-radiolabeled water and diet, respectively. At normal dietary and waterborne Cu levels, the uptake rates of dietary Cu into the whole body without the gut were 0.40-0.90 ng. g(-1). h(-1), >10-fold higher than uptake rates of waterborne Cu into the whole body without the gills, which were 0.02-0.07 ng. g(-1). h(-1). Previously Cu-exposed fish showed decreased new Cu accumulation in the gills, liver, and carcass during waterborne (64)Cu exposures and in the liver during dietary (64)Cu exposures. A 3-h gill Cu-binding assay showed downregulation of the putative high-affinity, low-capacity Cu transporters and upregulation of the low-affinity, high-capacity Cu transporters at the gills in Cu-preexposed fish. Exchangeable Cu pools in all the tissues were higher during dietary than during waterborne (64)Cu exposures, and previous Cu exposure reduced waterborne exchangeable Cu pools in gill, liver, and carcass. Overall, these results suggest a quantitatively greater role for the dietary than for the waterborne route of Cu uptake, a key role for the gill in Cu homeostasis, and important roles for the liver and gut in the normal metabolism of Cu in fish.  相似文献   

9.
1. Although there are many reports in the literature of circadian rhythms in plasma hormone and metabolite levels, the data are highly variable between research groups. The present study attempts to re-examine whether circadian rhythm in plasma cortisol, thyroid hormone, ions, glucose and protein levels and liver glycogen levels are evident in rainbow trout, Salmo gairdneri, and determine whether there is a significant correlation between any of the measured variables. 2. Significant fluctuations throughout the day were found in all measured variables; although these fluctuations appear to be a normal component in the homeostatic function of rainbow trout, their timing was neither consistent nor predictable. 3. "Circadian-like" patterns were observed in levels of plasma cortisol, glucose, Mg2+ and K+ concentrations and liver glycogen concentration. 4. Seasonal variations in these circadian-like rhythms were found in liver glycogen and plasma cortisol, Mg2+ and K+ concentrations. 5. Plasma cortisol and glucose concentrations were affected by time of feeding. 6. There were significant correlations between plasma thyroid hormone and plasma protein levels, but no other significant correlation between any of the measured variables was found.  相似文献   

10.
The kidney plays an important role in ion regulation in both freshwater and seawater fish. However, ion transport mechanisms in the teleost kidney are poorly understood, especially at the molecular level. We have cloned a kidney-specific SLC26 sulfate/anion exchanger from rainbow trout (Oncorhynchus mykiss) that is homologous to the mammalian SLC26A1 (Sat-1). Excretion of excess plasma sulfate concentration after Na2SO4 injection corresponded to significantly higher expression of the cloned SLC26A1 mRNA. Detailed morphological observation of rainbow trout renal tubules was also performed by light microscopy and transmission electron microscopy. According to the structure of brush border and tubular system in the cytoplasm, renal tubules of rainbow trout were classified into proximal tubule first and second (PI and PII) segments and distal tubules. In situ hybridization revealed that SLC26A1 anion exchanger mRNA is specifically localized in the PI segment of kidneys from both seawater- and freshwater-adapted rainbow trout. With immunocytochemistry, Na+-K+-ATPase and vacuolar-type H+-ATPase were colocalized to the same cells and distributed in the basolateral and the apical membranes, respectively, of the cells where the SLC26A1 mRNA expressed. These findings suggest that the cloned kidney-specific SLC26A1 is located in kidney proximal tubules and is involved in excretion of excess plasma sulfate in rainbow trout.  相似文献   

11.
Zinc is both a vital nutrient and an important toxicant to aquatic biota. In order to understand the interplay between nutrition and toxicity, it will be important to determine the mechanisms and the factors that regulate zinc uptake. The mechanism of apical intestinal Zn(II) uptake in freshwater rainbow trout and its potential modification by the complexing amino acid histidine was investigated using brush-border membrane vesicles (BBMVs). Following characterisation of the BBMV preparation, zinc uptake in the absence of histidine was both time- and concentration-dependent and consisted of two components. A saturable phase of uptake was described by an affinity constant of 57±17 μM and a transport capacity of 1867±296 nmol mg membrane protein−1 min−1. At higher zinc levels (>500 μM) a linear, diffusive component of uptake was evident. Zinc transport was also temperature-dependent, with Q10 values suggesting zinc uptake was a carrier-mediated process. Zinc uptake by vesicles in the presence of histidine was correlated to a mono-histidine species (Zn(His)+) at all Zn(II) concentrations examined.  相似文献   

12.
The purposes of this study were to demonstrate the C3 convertase complex, C3b, Bb (EC 3.4.21.47), of the alternative pathway of complement by ultracentrifugation and to determine whether the metal ion required for enzyme formation is present in the active enzyme complex. It has been shown previously that C3b,Bb formed with Ni2+ rather than Mg2+ exhibits enhanced stability. Using sucrose density gradient ultracentrifugation, an enzymatically active C3b,Bb(Ni) complex could be demonstrated which has a sedimentation coefficient of 10.7 S and which is stable in 10 mM EDTA. Upon formation of the enzyme with the radioisotope 63Ni2+, the ultracentrifugal distribution of the metal correlated with that of the enzyme complex. The molar ratio of Ni to C3b,Bb was 1:1. Displacement of Ni by Mg during formation of the enzyme indicated that both metals may bind to the same site in the enzyme. Binding of 63Ni to the catalytic site bearing fragment Bb was significantly stronger than its binding to C3b or to the zymogen, Factor B. It is proposed that there is one metal-binding site in the C3b,Bb enzyme which is not susceptible to chelation by EDTA and which is located in the Bb subunit.  相似文献   

13.
14.
The ability of a range of doses of ultraviolet irradiation (UV) to inactivate the waterborne actinospore or triactinomyxon stages (TAMs) of Myxobolus cerebralis was evaluated by infectivity for juvenile rainbow trout Oncorhynchus mykiss. TAMs were UV-irradiated using a low pressure mercury vapour lamp collimated beam apparatus. All doses 40, 80, 120 and 160 mJ cm(-2) were found to completely inactivate the TAMs as demonstrated by the absence of microscopic lesions, myxospores and parasite DNA detected by quantitative PCR (qPCR) among rainbow trout 5 mo post-exposure. In contrast, rainbow trout receiving the same concentrations of untreated TAMs (1000 fish(-1)) developed clinical signs of whirling disease at 2 mo post-exposure and had severe microscopic lesions, high myxospore counts and high qPCR values when examined at 5 mo following exposure to the parasite.  相似文献   

15.
A novel cell isolation technique was used to characterize cadmium and calcium uptake in distinct populations of gill cells from the adult rainbow trout (Oncorhynchus mykiss). A specific population of mitochondria-rich (MR) cell, termed the PNA+ MR cell (PNA is peanut lectin agglutinin), was found to accumulate over threefold more 109Cd than did PNA- MR cells, pavement cells (PV cells), and mucous cells during a 1-h in vivo exposure at 2.4 microg/l 109Cd. In vitro 109Cd exposures, performed in standard PBS and Cl- -free PBS, at concentrations from 1 to 16 microg/l 109Cd, were also carried out to further characterize Cd2+ uptake kinetics. As observed during in vivo experiments, PNA+ MR cells accumulated significantly more 109Cd than did other cell types when exposures were performed by an in vitro procedure in PBS. Under such conditions, Cd2+ accumulation kinetics in all cell types could be described with Michaelis-Menten relationships, with Km values of approximately 3.0 microg/l Cd (27 nM) for both MR cell subtypes and 8.6 microg/l Cd (77 nM) for PV cells. In similar experiments performed in Cl- -free conditions, a significant reduction in 109Cd accumulation in PNA+ MR cells was seen but not in PNA- MR or in PV cells. In vitro 45Ca fluxes were also performed to determine the cellular localization of Ca2+ transport in these functionally distinct populations of gill cells. 45Ca uptake was most pronounced in PNA+ MR cells, with levels over threefold higher than those found in either PNA(-) MR or in PV cells. Results from the present study suggest that the PNA+ MR cell type is a high-affinity and high-capacity site for apical entry of Cd2+ and Ca2+ in the gill epithelium of rainbow trout.  相似文献   

16.
We evaluated the differential nature of interactions between waterborne Ca and Cd transport in the gills of yellow perch (Perca flavescens) and rainbow trout (Oncorhynchus mykiss), two species with a more than 400-fold difference in acute waterborne Cd tolerance. The Jmax (maximum rate of uptake) and Km (inverse of affinity) for Ca uptake, in the absence of Cd, were significantly lower in yellow perch (120.48 nM g–1 wet wt h–1 and 92.17 M, respectively) relative to rainbow trout (188.68 nM g–1 wet wt h–1 and 243.90 M, respectively). Similarly, the Jmax for Cd uptake, at the lowest waterborne Ca level (100 M) tested, was significantly lower in yellow perch (0.27 nM g–1 wet wt h–1) relative to rainbow trout (0.40 nM g–1 wet wt h–1), but no significant difference was observed in the Km values between the two species (yellow perch: 32.47 nM; rainbow trout: 31.27 nM). Waterborne Cd (0–890 nM) as well as waterborne Ca (100–1,000 M) competitively inhibited branchial uptake of each other in both species. However, analyses of inhibitor constants for branchial Ca uptake by waterborne Cd ( ) revealed that the inhibition was about 1.8 times more potent in rainbow trout compared to yellow perch. In contrast, analyses of inhibitor constants for branchial Cd uptake by waterborne Ca ( ) indicated that the inhibition was more than three fold more potent in yellow perch than in rainbow trout. Higher branchial Ca uptake and more potent inhibition by Cd as well as higher branchial Cd uptake and less potent inhibition by Ca were also reflected in whole-body measurements of Ca and Cd influx in trout relative to perch. Overall, whole-body effects were in accord with the branchial kinetic analyses. These results further strengthen the conclusion that branchial influxes of Ca and Cd occur through common pathways. Moreover, interspecific differences in acute waterborne Cd sensitivity can be explained, at least in part, by the differential nature of interactions between waterborne Ca and Cd transport in fish gills.Abbreviations FAAS flame atomic absorption spectrophotometer - GFAAS graphite furnace atomic absorption spectrophotometer - J max maximum rate of uptake - K i inhibitor constant - K m substrate concentration at which the rate of uptake is half of the Jmax - 96 h LC50 concentration at which 50% mortality occurs after 96 h Communicated by L.C.-H. WangThis revised version was published online in February 2004 with corrections to the abbreviation .  相似文献   

17.
The estrogenic effect of propylparaben was investigated in a rainbow trout Oncorhynchus mykiss test system. Propylparaben was administered orally to sexually immature rainbow trout every second day for up to 10 days in doses between 7 and 1830 mg kg(-1) 2 d(-1) and in the water at 50 and 225 microg l(-1) for 12 days. Plasma vitellogenin was measured before and during the exposures and the concentrations of propylparaben in liver and muscle were determined at the end of experiments. Increases in average plasma vitellogenin levels were seen at oral exposure to 33 mg propylparabenkg(-1) 2 d(-1); the most sensitive fish responded to 7 mg kg(-1). The ED(50) values for increase in vitellogenin synthesis were 35, 31 and 22 mg kg(-1) 2 d(-1) at day 3, 6 and 11, respectively. Exposure to 225 microg propylparabenl(-1) increased vitellogenin synthesis, but exposure to 50 microg l(-1) did not. Propylparaben showed little tendency to bioaccumulation in rainbow trout; less than 1 per thousand of the total amount of propylparaben administered orally at 1830 mg kg(-1) 2 d(-1) over the 10-d experimental period was retained in muscle and liver 24 h after the end of the experiment. Exposure to 225 microg propylparabenl(-1) for 12 d led to concentrations of 6700 and 870 microg propylparabenkg(-1) liver and muscle, respectively. Half lives for propylparaben were 8.6 h in liver and 1.5 h in muscle.  相似文献   

18.
Carotenoid (astaxanthin and canthaxanthin) concentrations in everted intestine from rainbow trout (Oncorhynchus mykiss, Walbaum) and Atlantic salmon (Salmo salar, L.) exposed to micelle solubilised carotenoid, have been determined. Following exposure (1 h) to astaxanthin solution (5 mg l(-1)), trout pyloric caeca and mid intestine had higher (P<0.05) mean tissue astaxanthin concentrations (0.50+/-0.08 microg g(-1) and 0.54+/-0.09 microg g(-1), respectively) compared to hind intestine (0.04+/-0.01 microg g(-1); n=11+/-S.E.). Furthermore, the astaxanthin concentration in pyloric caeca (0.50+/-0.08 microg g(-1)) was greater (P<0.05) than that of canthaxanthin (0.11+/-0.01 microg g(-1); n=11, +/-S.E.) when exposed to solutions of similar carotenoid concentration (5.11+/-0.16 mg l(-1) and 5.35+/-0.16 mg l(-1), respectively; n=3+/-S.E.). However, no differences (P>0.05) were recorded between trout and salmon intestinal tissue in terms of astaxanthin concentration following exposure. Trout caeca exposed to astaxanthin solution had significantly (P<0.05) more vitamin A (514.1+/-36.4 microg g(-1)) compared to control tissues (316.5+/-61.7 microg g(-1); n=8+/-S.E.). Vitamin A(1) concentrations in caeca (287.7+/-11.0 microg g(-1)) exposed to astaxanthin solution were significantly higher (P<0.05) compared to controls (174.9+/-26.9 microg g(-1)). However, vitamin A(2) concentrations were not significantly (P>0.05) different (226.3+/-28.2 microg g(-1) and 141.6+/-35.2 microg g(-1), respectively).  相似文献   

19.
The effects of chronic exposure to waterborne Cd and elevated dietary Ca, alone and in combination, were examined in juvenile rainbow trout, Oncorhynchusmykiss. Fish were chronically exposed to 0.05 (control) or 2.56 μg/l Cd [as Cd(NO3)2·4H2O] and were fed 2% body mass/day of control (29.6 mg Ca/g) or Ca-supplemented trout food (52.8 mg Ca/g as CaCl2·2H2O). Cd accumulated mainly in gill, liver, and kidney. Waterborne Cd inhibited unidirectional Ca uptake from water into the gill and induced hypocalcemia in the plasma on day 40. Waterborne Cd also induced an elevated Ca concentration on day 20 in the gill tissue of trout fed the Ca-supplemented diet and a decreased Ca concentration on day 35 in the gills of trout fed the control diet. Dietary Ca protected against Cd accumulation in gill, liver, and kidney, but did not protect against the inhibition of Ca uptake into the gill or plasma hypocalcemia. When fed Ca-supplemented diet and exposed to waterborne Cd, fish showed 35% mortality, compared to 0–2% in control fish and in the Cd-exposed fish with normal Ca in the diet. Growth, on the other hand, was not affected by any treatment.  相似文献   

20.
In Finland, viral haemorrhagic septicaemia virus (VHSV) was diagnosed for the first time in 2000 from 4 rainbow trout farms in brackish water. Since then the infection has spread and, by the end of 2004, VHSV had been isolated from 24 farms in 3 separate locations: 2 in the Baltic Sea and 1 in the Gulf of Finland. The pathogenicity of 3 of these isolates from 2 separate locations was analysed in infection experiments with rainbow trout fry. The cumulative mortalities induced by waterborne and intraperitoneal challenge were approximately 40 and 90 %, respectively. Pair-wise comparisons of the G and NV gene regions of Finnish VHSV isolates collected between 2000 and 2004 revealed that all isolates were closely related, with 99.3 to 100% nucleotide identity, which suggests the same origin of infection. Phylogenetic analysis revealed that they were closely related to the old freshwater isolates from rainbow trout in Denmark and to one old marine isolate from cod in the Baltic Sea, and that they were located close to the presumed ancestral source. As the Finnish isolates induce lower mortality than freshwater VHSV isolates in infection experiments, they could represent an intermediate stage of marine isolates evolving towards pathogenicity in rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号