首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation of testosterone by specific hydroxylations is a main function of cytochrome P450 (P450, CYP) in the brain. Recent data imply that induction of brain P450s by neuroactive drugs alters steroid hormone levels and endocrine signalling, giving rise to endocrine disorders. In this study, we investigated this drug–hormone crosstalk in mouse brain. Phenytoin led to a significant increase of 2α-, 2β-, 6β-, 16α- and 16β-hydroxytestosterones, while 6α- and 15α-hydroxytestosterones showed no significant alteration of their metabolism compared with untreated controls. Inhibition of testosterone hydroxylation using the chemical inhibitors orphenadrine, chloramphenicol, ketoconazole and nifedipine as well as antibodies against CYP3A- and 2B-isoforms pointed to major role of Cyp3a11 and an only minor function of Cyp2b9/10 in mouse brain. Cyp3a11 revealed to be the major isoform affected by phenytoin. There was considerable overlap of Cyp3a11 and AR expression in neuronal structures of the limbic system, namely the hippocampus, amygdala, hypothalamus and thalamus. Phenytoin treatment led to an increase of both, Cyp3a11 and AR expression in the limbic system. Additionally, the coherence between CYP3A and AR expression was analysed in PC-12 cells. Inhibition of phenytoin-induced endogenous CYP3A2 and AR by ketoconazole led a reduction of their expression to basal levels. We conclude that Cyp3a11 plays a crucial role in directing drug action to hormonal response within the limbic system of mouse brain in a so-called drug–hormone crosstalk.  相似文献   

2.
3.
Lorbek G  Lewinska M  Rozman D 《The FEBS journal》2012,279(9):1516-1533
The present review describes the transgenic mouse models that have been designed to evaluate the functions of the cytochrome P450s involved in cholesterol and bile acid synthesis, as well as their link with disease. The knockout of cholesterogenic Cyp51 is embrionally lethal, with symptoms of Antley-Bixler syndrome occurring in mice, whereas the evidence for this association is conflicting in humans. Disruption of Cyp7a1 from classic bile acid synthesis in mice leads to either increased postnatal death or a milder phenotype with elevated serum cholesterol. The latter is similar to the case in humans, where CYP7A1 mutations associate with high plasma low-density lipoprotein and hepatic cholesterol content, as well as deficient bile acid excretion. Disruption of Cyp8b1 from an alternative bile acid pathway results in the absence of cholic acid and a reduced absorption of dietary lipids; however, the human CYP8B1 polymorphism fails to explain differences in bile acid composition. Unexpectedly, apparently normal Cyp27a1(-/-) mice still synthesize bile acids that originate from the compensatory pathway. In humans, CYP27A1 mutations cause cerebrotendinous xanthomatosis, suggesting that only mice can compensate for the loss of alternative bile acid synthesis. In line with this, Cyp7b1 knockouts are also apparently normal, whereas human CYP7B1 mutations lead to a congenital bile acid synthesis defect in children or spastic paraplegia in adults. Mouse knockouts of the brain-specific Cyp46a1 have reduced brain cholesterol excretion, whereas, in humans, CYP46A1 polymorphisms associate with cognitive impairment. At present, cytochrome P450 family 39 is poorly characterized. Despite important physiological differences between humans and mice, mouse models prove to be an invaluable tool for understanding the multifactorial facets of cholesterol and bile acid-related disorders.  相似文献   

4.
5.
A full-length cDNA clone encoding a novel form of the cytochrome P450 3A subfamily (Cyp3a-25) has been isolated from a mouse liver cDNA library. The sequence contained 2010 base pairs and encoded a protein with 503 amino acids. The amino acid sequence shared greater identities with rat CYP3A18 (90%) and golden hamster CYP3A10 (81%) sequences than with known mouse sequences (Cyp3a-11, Cyp3a-13, Cyp3a-16, and Cyp3a-41 [68--70%]). CYP3A25 was expressed in the Escherichia coli PCWori(+) expression vector following slight modifications of the N- and C-terminals of the cDNA. The purified CYP3A25 was recognized on an immunoblot by CYP3A1 antibody and has a molecular weight of 50 kD. CYP3A25 was catalytically active in the 6 beta-hydroxylation of testosterone and the N-demethylation of benzphetamine and erythromycin. It was demonstrated by RT-PCR that the CYP3A25 mRNA is present in both fetal and adult tissues, including liver, lung, intestines, kidney, and brain. Northern blotting demonstrated that expression is greatest in the liver and small intestine.  相似文献   

6.
Antley-Bixler syndrome (ABS) represents a group of heterogeneous disorders characterized by skeletal, cardiac, and urogenital abnormalities that have frequently been associated with mutations in fibroblast growth factor receptor 2 or cytochrome P450 reductase genes. In some ABS patients, reduced activity of the cholesterogenic cytochrome P450 CYP51A1, an ortholog of the mouse CYP51, and accumulation of lanosterol and 24,25-dihydrolanosterol has been reported, but the role of CYP51A1 in the ABS etiology has remained obscure. To test whether Cyp51 could be involved in generating an ABS-like phenotype, a mouse knock-out model was developed that exhibited several prenatal ABS-like features leading to lethality at embryonic day 15. Cyp51(-/-) mice had no functional Cyp51 mRNA and no immunodetectable CYP51 protein. The two CYP51 enzyme substrates (lanosterol and 24,25-dihydrolanosterol) were markedly accumulated. Cholesterol precursors downstream of the CYP51 enzymatic step were not detected, indicating that the targeting in this study blocked de novo cholesterol synthesis. This was reflected in the up-regulation of 10 cholesterol synthesis genes, with the exception of 7-dehydrocholesterol reductase. Lethality was ascribed to heart failure due to hypoplasia, ventricle septum, and epicardial and vasculogenesis defects, suggesting that Cyp51 deficiency was involved in heart development and coronary vessel formation. As the most likely downstream molecular mechanisms, alterations were identified in the sonic hedgehog and retinoic acid signaling pathways. Cyp51 knock-out mice provide evidence that Cyp51 is essential for embryogenesis and present a potential animal model for studying ABS syndrome in humans.  相似文献   

7.
8.
A novel human cytochrome P450 cDNA designated CYP2U1 was identified using homology searches, and the corresponding gene is located on chromosome 4. The deduced 544 amino acid sequence displays up to 39% identity to other CYP2 family members, with closest resemblance to CYP2R1 and is highly conserved between species. CYP2U1 shows some structural differences compared to other CYP2 family members. The gene has only five exons and the enzyme harbors two insertions in the N-terminal region. Northern blot analysis revealed high mRNA expression in human thymus, with weaker expression in heart and brain, whereas in the rat similar mRNA levels were detected in thymus and brain. Western blot analysis revealed much higher CYP2U1 protein expression in rat brain than in thymus, particularly in limbic structures and in cortex. The physiological and toxicological role of this novel P450 is still unknown, but the selective tissue distribution suggests an important endogenous function.  相似文献   

9.
10.
Cytochrome P450 17 alpha-hydroxylase/C17-20 lyase (P45017 alpha) catalyzes the conversion of C-21 steroids to C-19 steroids in gonads. A full-length mouse cDNA encoding P450 17 alpha was isolated from a mouse Leydig cell library and characterized by restriction mapping and sequencing. The predicted amino acid sequence has 83% homology to rat, 66% homology to human, and 62% homology to bovine P45017 alpha amino acid sequences. The protein is 507 amino acids in length, which is 1 amino acid shorter than the human protein and 2 amino acids shorter than the bovine protein. The structural gene encoding P450 17 alpha (Cyp17) was localized utilizing an interspecific testcross to mouse chromosome 19, distal to Got-1. Another cytochrome P450, P4502c (Cyp2c), also is located at the distal end of chromosome 19. CYP17, CYP2c, and GOT1 have been mapped to human chromosome 10, with CYP2C and GOT1 mapped to the distal region, q24.3 and q25.3, respectively. The data in the present study indicate conserved syntenic loci on mouse chromosome 19 and human chromosome 10 and predict that the structural gene encoding P45017 alpha will be found distal to GOT1 on human chromosome 10.  相似文献   

11.
The cytochrome P450 (CYP) genes Cyp51, Cyp11a1, Cyp17a1, Cyb11b1, Cyp11b2 and Cyp21a1 are involved in the adrenal production of corticosteroids, whose circulating levels are circadian. cAMP signaling plays an important role in adrenal steroidogenesis. By using cAMP responsive element modulator (Crem) knockout mice, we show that CREM isoforms contribute to circadian expression of steroidogenic CYPs in the mouse adrenal gland. Most striking was the CREM-dependent hypomethylation of the Cyp17a1 promoter at zeitgeber time 12, which resulted in higher Cyp17a1 mRNA and protein expression in the knockout adrenal glands. The data indicate that products of the Crem gene control the epigenetic repression of Cyp17 in mouse adrenal glands.  相似文献   

12.
Previous studies have shown that the presence of one P450 enzyme can affect the function of another. The goal of the present study was to determine if P450 enzymes are capable of forming homomeric complexes that affect P450 function. To address this problem, the catalytic activities of several P450s were examined in reconstituted systems containing NADPH-POR (cytochrome P450 reductase) and a single P450. CYP2B4 (cytochrome P450 2B4)-, CYP2E1 (cytochrome P450 2E1)- and CYP1A2 (cytochrome P450 1A2)-mediated activities were measured as a function of POR concentration using reconstituted systems containing different concentrations of P450. Although CYP2B4-dependent activities could be explained by a simple Michaelis-Menten interaction between POR and CYP2B4, both CYP2E1 and CYP1A2 activities generally produced a sigmoidal response as a function of [POR]. Interestingly, the non-Michaelis behaviour of CYP1A2 could be converted into a simple mass-action response by increasing the ionic strength of the buffer. Next, physical interactions between CYP1A2 enzymes were demonstrated in reconstituted systems by chemical cross-linking and in cellular systems by BRET (bioluminescence resonance energy transfer). Cross-linking data were consistent with the kinetic responses in that both were similarly modulated by increasing the ionic strength of the surrounding solution. Taken together, these results show that CYP1A2 forms CYP1A2-CYP1A2 complexes that exhibit altered catalytic activity.  相似文献   

13.
A new P450 gene has been found in humans. It has 44% sequence identity to CYP26A1 from human and mouse, which places it in a new subfamily, CYP26B. There is only one human EST from a retinal library (AA012833) that matches the coding region. No homologous ESTs are found in mouse. A zebrafish EST AI721901 shows 68% identity to the human protein. This zebrafish EST is only 41% identical to the zebrafish CYP26A1 protein sequence, so it represents the homolog of the human CYP26B1 sequence. It is not known if this gene product will act on all-trans-retinoic acid like the CYP26A1 protein or if it might hydroxylate the 9-cis- or 13-cis-retinoic acid isoforms not recognized by CYP26A1. The importance of the CYP26A1 P450 in mouse and zebrafish development flags the CYP26B1 gene as a potential developmental gene.  相似文献   

14.
15.
Endogenous steroids and numerous environmental agents have potent effects on mammary development and carcinogenesis. Locally produced cytochrome P450 enzymes that modify such molecules are therefore likely to be important regulators of these processes. Here we describe the characterization of a novel mouse gene, termed Cyp2d22, that is highly expressed in the mammary tumor derived cell line RIII/Prl. Cyp2d22 is expressed at intermediate levels in the weakly tumorigenic cell line RIII/MG, whereas expression is low or absent in all normal mouse mammary epithelial cell lines tested and three C3H mammary tumor derived cell lines. Immunoblot analysis of mouse tissues with highly specific antisera indicates that 2D22 protein levels are most abundant in liver, while intermediate levels of expression are seen in adrenal, ovary, and mammary gland. Immunohistochemical staining of liver sections with these antisera demonstrates that 2D22 is most abundant in the first layer or two of parenchymal cells surrounding the central vein, with virtually no expression detected in periportal cells. Interestingly, sequence similarity and functional data suggest that Cyp2d22 may be the mouse ortholog of human CYP2D6. These observations support the hypothesis that 2D22 mediates a distinct, biologically significant activity in relation to other mouse 2D family members.  相似文献   

16.
17.
Berberine, an isoquinoline alkaloid isolated from medicinal plants such as Berberis aristata, Coptis chinesis, Coptis japonica, Coscinium fenestatun, and Hydrastis Canadensis, is widely used in Asian countries for the treatment of diabetes, hypertension, and hypercholesterolemia. Interaction between berberine and the cytochrome P450 enzymes (CYPs) has been extensively reported, but there are only a few reports of this interaction in the diabetic state. In this study, the effect of berberine on the mRNA of the CYPs in primary mouse hepatocytes and in streptozotocin (STZ)-induced diabetic mice was investigated. In primary mouse hepatocytes, berberine suppressed the induction of Cyp1a1, Cyp1a2, Cyp2e1, Cyp3a11, Cyp4a10, and Cyp4a14 mRNA expression by their prototypical inducers in a concentration-dependent fashion. However, berberine treatment alone increased the expression of Cyp2b9 and Cyp2b10 mRNA. In vivo, berberine showed the same hypoglycemic activity as metformin, an established hypoglycemic drug. The hepatic mRNA levels of Cyp1a1, Cyp2b9, Cyp2b10, Cyp3a11, Cyp4a10, and Cyp4a14 were increased in STZ-induced diabetic mice. Interestingly, berberine itself suppressed the expression of Cyp2e1, an adverse hepatic event-associated enzyme, while the expression of Cyp3a11, Cyp4a10, and Cyp4a14 were restored to normal levels by berberine. In conclusion, berberine has the potential to modify the expression of CYPs by either suppression or enhancement of CYPs' levels. Consumption of berberine as an anti-hyperglycemic compound by diabetic patients might provide an extra benefit due to its potential to restore the expression of Cyp2e1, Cyp3a, and Cyp4a to normal levels. However, an herb-drug interaction might be of concern since any berberine-containing product would definitely cause pronounced interactions based on CYP3A4 inhibition.  相似文献   

18.
The effect of xenobiotics (phenobarbital and atrazine) on the expression of Drosophila melanogaster CYP genes encoding cytochromes P450, a gene family generally associated with detoxification, was analyzed by DNA microarray hybridization and verified by real-time RT-PCR in adults of both sexes. Only a small subset of the 86 CYP genes was significantly induced by the xenobiotics. Eleven CYP genes and three glutathione S-transferases (GST) genes were significantly induced by phenobarbital, seven CYP and one GST gene were induced by atrazine. Cyp6d5, Cyp6w1, Cyp12d1 and the ecdysone-inducible Cyp6a2 were induced by both chemicals. The constitutive expression of several of the inducible genes (Cyp6a2, Cyp6a8, Cyp6d5, Cyp12d1) was higher in males than in females, and the induced level similar in both sexes. Thus, the level of induction was consistently higher in females than in males. The female-specific and hormonally regulated yolk protein genes were significantly induced by phenobarbital in males and repressed by atrazine in females. Our results suggest that the numerous CYP genes of Drosophila respond selectively to xenobiotics, providing the fly with an adaptive response to chemically adverse environments. The xenobiotic inducibility of some CYP genes previously associated with insecticide resistance in laboratory-selected strains (Cyp6a2, Cyp6a8, Cyp12d1) suggests that deregulation of P450 gene expression may be a facile way to achieve resistance. Our study also suggests that xenobiotic-induced changes in P450 levels can affect insect fitness by interfering with hormonally regulated networks.  相似文献   

19.
The fugu (pufferfish) genome has been sequenced, and a second genome assembly was released 17 May 2002. Exhaustive searches were made to identify all P450 genes and pseudogenes from the earlier release of 26 October 2001. P450 genes assembled as completely as possible from these data were used to do additional searches of the newer assembly and all P450 genes and pseudogenes in the available fugu sequence data have been identified, compared to human P450s, and assigned names. There are 54 P450 genes in fugu and 1 nearly intact pseudogene (CYP3A50P). CYP1A is missing much of its N-terminal half; however, 45 P450 genes are completely assembled. Eight others are lacking only one or two exons or less. CYP2X4 is known only from an EST. This may be a 55th P450 gene if it represents an accurate sequence. In addition to 2X4, there are 16 other pseudogene fragments or small pieces of P450 genes. At the P450 family level, 17 of 18 mammalian families are found in fugu. CYP39 is the only CYP family missing and it is not seen in any other fish sequence data either. The CYP2 family shows the largest degree of divergence. In the CYP2 family, only CYP2R1 and CYP2U1 are conserved as recognizable subfamilies across species. Intron-exon boundaries are largely preserved across 420 million years of evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号