首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:4,自引:0,他引:4  
Abstract Darwin envisaged male-male and male-female interactions as mutually supporting mechanisms of sexual selection, in which the best armed males were also the most attractive to females. Although this belief continues to predominate today, it has been challenged by sexual conflict theory, which suggests that divergence in the interests of males and females may result in conflicting sexual selection. This raises the empirical question of how multiple mechanisms of sexual selection interact to shape targeted traits. We investigated sexual selection on male morphology in the sexually dimorphic fly Prochyliza xanthostoma , using indices of male performance in male-male and male-female interactions in laboratory arenas to calculate gradients of direct, linear selection on male body size and an index of head elongation. In male-male combat, the first interaction with a new opponent selected for large body size but reduced head elongation, whereas multiple interactions with the same opponent favored large body size only. In male-female interactions, females preferred males with relatively elongated heads, but male performance of the precopulatory leap favored large body size and, possibly, reduced head elongation. In addition, the amount of sperm transferred (much of which is ingested by females) was an increasing function of both body size and head elongation. Thus, whereas both male-male and male-female interactions favored large male body size, male head shape appeared to be subject to conflicting sexual selection. We argue that conflicting sexual selection may be a common result of divergence in the interests of the sexes.  相似文献   

2.
It is widely recognized that maternal phenotype can have important effects on offspring, but paternal phenotype is generally assumed to have no influence in animals lacking paternal care. Nonetheless, selection may favour the transfer of environmentally acquired condition to offspring from both parents. Using a split-brood, cross-generational laboratory design, we manipulated a key environmental determinant of condition - larval diet quality - of parents and their offspring in the fly Telostylinus angusticollis, in which there is no evidence of paternal provisioning. Parental diet did not affect offspring survival, but high-condition mothers produced larger eggs, and their offspring developed more rapidly when on a poor larval diet. Maternal condition had no effect on adult body size of offspring. By contrast, large, high-condition fathers produced larger offspring, and follow-up assays showed that this paternal effect can be sufficient to increase mating success of male offspring and fecundity of female offspring. Our findings suggest that both mothers and fathers transfer their condition to offspring, but with effects on different offspring traits. Moreover, our results suggest that paternal effects can be important even in species lacking conventional forms of paternal care. In such species, the transfer of paternal condition to offspring could contribute to indirect selection on female mate preferences.  相似文献   

3.
    
The hypothesis that sexual selection drives the evolution of condition dependence is not firmly supported by empirical evidence, and the process remains poorly understood. First, even though sexual competition typically involves multiple traits, studies usually compare a single sexual trait with a single \"control\" trait, ignoring variation among sexual traits and raising the possibility of sampling bias. Second, few studies have addressed the genetic basis of condition dependence. Third, even though condition dependence is thought to result from a form of sex-specific epistasis, the evolution of condition dependence has never been considered in relation to intralocus sexual conflict. We argue that condition dependence may weaken intersexual genetic correlations and facilitate the evolution of sexual dimorphism. To address these questions, we manipulated an environmental factor affecting condition (larval diet) and examined its effects on four sexual and four nonsexual traits in Prochyliza xanthostoma adults. As predicted by theory, the strength of condition dependence increased with degree of exaggeration among male traits. Body shape was more condition dependent in males than in females and, perhaps as a result, genetic and environmental effects on body shape were congruent in males, but not in females. However, of the four male sexual traits, only head length was significantly larger in high-condition males after controlling for body size. Strong condition dependence was associated with reduced intersexual genetic correlation. However, homologous male and female traits exhibited correlated responses to condition, suggesting an intersexual genetic correlation for condition dependence itself. Our findings support the role of sexual selection in the evolution of condition dependence, but reveal considerable variation in condition dependence among sexual traits. It is not clear whether the evolution of condition dependence has mitigated or exacerbated intralocus sexual conflict in this species.  相似文献   

4.
    
Rensch's rule proposes a universal allometric scaling phenomenon across species where sexual size dimorphism (SSD) has evolved: in taxa with male‐biased dimorphism, degree of SSD should increase with overall body size, and in taxa with female‐biased dimorphism, degree of SSD should decrease with increasing average body size. Rensch's rule appears to hold widely across taxa where SSD is male‐biased, but not consistently when SSD is female‐biased. Furthermore, studies addressing this question within species are rare, so it remains unclear whether this rule applies at the intraspecific level. We assess body size and SSD within Tribolium castaneum (Herbst), a species where females are larger than males, using 21 populations derived from separate locations across the world, and maintained in isolated laboratory culture for at least 20 years. Body size, and hence SSD patterns, are highly susceptible to variations in temperature, diet quality and other environmental factors. Crucially, here we nullify interference of such confounds as all populations were maintained under identical conditions (similar densities, standard diet and exposed to identical temperature, relative humidity and photoperiod). We measured thirty beetles of each sex for all populations, and found body size variation across populations, and (as expected) female‐biased SSD in all populations. We test whether Rensch's rule holds for our populations, but find isometry, i.e. no allometry for SSD. Our results thus show that Rensch's rule does not hold across populations within this species. Our intraspecific test matches previous interspecific studies showing that Rensch's rule fails in species with female‐biased SSD.  相似文献   

5.
    
In this paper, we examine allometric and sexual-selection explanations for interspecific differences in the amount of sexual dimorphism among 60 primate species. Based on evidence provided by statistical analyses, we reject Leutenegger and Cheverud’s [(1982). Int. J. Primatol.3:387-402] claim that body size alone is the major factor in the evolution of sexual dimorphism. The alternative proposed here is that sexual selection due to differences in the reproductive potential of males and females is the primary cause of sexual dimorphism. In addition, we propose that the overall size of a species determines whether the dimorphism will be expressed as size dimorphism,rather than in some other form.  相似文献   

6.
    
Selective forces shape sexes differently, with male body proportions facing strong selection to enhance mate searching and male-to-male combat traits, and female fitness being influenced by the ability to assimilate large amounts of nutrients necessary for vitellogenesis (and/or gestation), and their ability to carry the eggs or embryos. We evaluated the sexual dimorphism of body proportion of more than 800 wild steppe tortoises (Testudo horsfieldii) in Uzbekistan. The thick, well-developed shell offers protection from predators but pronounced digging habits probably also constrain body shape (e.g. a shell that is dorso-ventrally flattened, although round from a dorsal view helps to penetrate into, and move within the soil). Thus, in this species, natural selection might favour a heavy and flat shell that is 'closed' with small openings for appendages. In males, these environmental influences appear to be countered by sexual selection. Compared to females, they weigh less (absolutely and relative to shell dimensions), have longer legs, have shell structure allowing wider movements for their legs, and they walk faster. Males were also able to right themselves more quickly than females did in experimental tests. This quick righting ability is critical because intra-sexual combats frequently result in males being flipped onto their backs and becoming prone to hyperthermia or predation. Females are heavily built, with wide shells (relative to male shells), which may provide space for carrying eggs. From our results, a number of simple hypotheses can be tested on a wide range of chelonian species.  相似文献   

7.
    
In order to be elaborated by sexual selection, sexual ornaments must vary perceptibly and genetically among individuals in natural populations. Rather little is known about ornament variation in monogamous species, in which sexual selection should act more weakly than in polygynous species. We report phenotypic variation in feather ornament size (elongated tails and pectoral tufts) and body size in the scarlet-tufted malachite sunbird Nectarinia johnstoni , a monogamous, sexually dimorphic nectarivore of East African alpine zones. Fully-expressed male ornaments are highly significantly more variable (CVs = 12–29%) than are skeletal and wing measures primarily affected by natural selection (CVs = 2 4%). Female sunbirds have pectoral tufts which are significantly (22–25%) smaller than those of adult males, but more variable (CVs= 21–22%, CVs= 12–15%), and more variable than body size. Among males with fully-grown ornaments, those with longer tails tend to have longer wings and wider tufts. The high variation in fully-grown ornaments in malachite sunbirds is consistent with the view that the ornaments are condition-dependent sexual signals. Finally, we review studies of feather ornament variation to date, and show that ornaments are much more variable in monogamous than non-monogamous species, apparently due to the relatively weak pressure of sexual selection.  相似文献   

8.
Sexual dimorphism in growth of conventional morphometric characters was investigated in juveniles and young adults (size range: 31 to 91 mm) of Oreochromis mossambicus . A closely associated set of traits was identified that shows sexually dimorphic growth, which was positively allometric in the males. These traits correspond to two different morphological complexes: jaw structure and anal/dorsal fins. The best sex discriminators among this set of traits were premaxilla width, anal fin height and snout length. These findings may be explained in terms of intra– and inter–sexual selection acting together and favouring males with strong and large mouths and high dorsal and anal fins, traits that are important in agonistic displays (jaw and fins), fighting and nest digging (jaw).  相似文献   

9.
Phenotypic variation, measured as the coefficient of variation (CV), is usually larger in secondary sexual characters than in ordinary morphological traits. We tested if intraspecific differences in the CV between ornamental and non-ornamental feather traits in 67 evolutionary events of feather ornamentation in birds were due to differences in (1) the allometric pattern (slope of the regression line when regressing trait size on an indicator of body size), or (2) the dispersion of observations around the regression line. We found that only dispersion of observations around the regression line contributed significantly to total variation. A large dispersion of observations around the regression line for ornamental feathers is consistent with these characters showing condition-dependence, supporting indicator models of sexual selection more strongly than a pure Fisher process. Ornamental feathers in males demonstrated negative allometry when regressed on tarsus length, which is a measure of skeletal body size. This finding is consistent with ornamental feather traits being subject to directional selection due to female mate preferences, where large body size is less important than in male–male competition. This pattern of phenotypic variation for avian secondary sexual characters contrasts with patterns of variation for insect genitalia, supposedly subject to sexual selection, since the latter traits only differ from ordinary morphology traits in allometry coefficient. The prevailing regime of selection (directional or stabilizing) and the effects of environmental factors are proposed to account for these differences among traits.  相似文献   

10.
    
In many species, sexual dimorphism increases with body size when males are the larger sex but decreases when females are the larger sex, a macro-evolutionary pattern known as Rensch''s rule (RR). Although empirical studies usually focus exclusively on body size, Rensch''s original proposal included sexual differences in other traits, such as ornaments and weapons. Here, we used a clade of harvestmen to investigate whether two traits follow RR: body size and length of the fourth pair of legs (legs IV), which are used as weapons in male–male fights. We found that males were slightly smaller than females and body size did not follow RR, whereas legs IV were much longer in males and followed RR. We propose that sexual selection might be stronger on legs IV length than on body size in males, and we discuss the potential role of condition dependence in the emergence of RR.  相似文献   

11.
    
Many animal taxa that display sexual size dimorphism (SSD) exhibit a positive allometric relationship in which the degree of dimorphism increases with body size. This macroevolutionary pattern is known as Rensch's rule. Although sexual selection is hypothesized to be the main mechanism causing this pattern, body size is influenced by several selective forces, including natural and sexual selection. Therefore, by focusing exclusively on SSD one cannot ascertain which of these selective forces drives Rensch's rule. If sexual selection is indeed the main mechanism underlying Rensch's rule, we predict that other sexually selected traits, including coloration‐based ornaments, will also exhibit interspecific allometric scaling consistent with Rensch's rule. We tested this prediction using wing pigmentation of 89 species of dragonflies. Studies show that male wing pigmentation is generally under strong intra‐ and intersexual selection, so that sexual dichromatism in this trait should follow Rensch's rule. Conversely, the available evidence suggests that male body size is usually not sexually selected in dragonflies, so we do not expect SSD to follow Rensch's rule. First, we found that sexual dichromatism in wing pigmentation was consistent with Rensch's rule. The phylogenetic major axis regression slope was significantly greater than one. We also showed that the allometric slope for SSD was not different from unity, providing no support for Rensch's rule. Our results provide the first evidence that a trait which appears to be under strong sexual selection exhibits a pattern consistent with Rensch's rule.  相似文献   

12.
Understanding the interaction between sexual and natural selection within variable environments is crucial to our understanding of evolutionary processes. The handicap principle predicts females will prefer males with exaggerated traits provided those traits are indicators of male quality to ensure direct or indirect female benefits. Spatial variability in ecological factors is expected to alter the balance between sexual and natural selection that defines the evolution of such traits. Male and female blackspotted topminnows (Fundulidae: Fundulus olivaceus) display prominent black dorsolateral spots that are variable in number across its broad range. We investigated variability in spot phenotypes at 117 sites across 13 river systems and asked if the trait was sexually dimorphic and positively correlated with measures of fitness (condition and gonadosomatic index [GSI]). Laboratory and mesocosm experiments assessed female mate choice and predation pressure on spot phenotypes. Environmental and community data collected at sampling locations were used to assess predictive models of spot density at the individual, site, and river system level. Greater number of spots was positively correlated with measures of fitness in males. Males with more spots were preferred by females and suffered greater mortality due to predation. Water clarity (turbidity) was the best predictor of spot density on the drainage scale, indicating that sexual and natural selection for the trait may be mediated by local light environments.  相似文献   

13.
Positive allometric patterns observed for intersexual signalling characters are related to directional sexual selection, and supported by theoretical and empirical data. Recent models have shown that positive allometry may not hold as a rule if the influence of natural selection is added to the model. Here we tested these models applying traditional morphometrical techniques for the analysis of chelicerae sexual dimorphism and allometric patterns within the genus Paratrechalea : Paratrechalea azul , Paratrechalea galianoae and Paratrechalea ornata . Spider chelicerae are basically used for prey capture, but males of Paratrechalea also use the chelicerae to offer a nuptial gift during courtship, also presenting a clear size and colour sexual dimorphism supporting a possible role as a signal. Chelicerae size was male biased for all the variables studied and showed an isometric pattern, while females showed a higher variation. Our findings are in accordance with models of viability-related function for prey capture, questioning some statements proposed by the positive allometry model.  相似文献   

14.
Many male animals have evolved exaggerated traits that they use in combat with rival males to gain access to females and secure their reproductive success. But some male animals invest in nuptial gifts that gains them access to females. Both these reproductive strategies are costly in that resources are needed to produce the weapon or nuptial gift. In closely related species where both weapons and nuptial gifts are present, little is known about the potential evolutionary trade-off faced by males that have these traits. In this study, we use dobsonflies (order Megaloptera, family Corydalidae, subfamily Corydalinae) to examine the presence and absence of enlarged male weapons versus nuptial gifts within and among species. Many dobsonfly species are sexually dimorphic, and males possess extremely enlarged mandibles that they use in battles, whereas in other species, males produce large nuptial gifts that increase female fecundity. In our study, we show that male accessory gland size strongly correlates with nuptial gift size and that when male weapons are large, nuptial gifts are small and vice versa. We mapped weapons and nuptial gifts onto a phylogeny we constructed of 57 species of dobsonflies. Our among-species comparison shows that large nuptial gift production evolved in many species of dobsonfly but is absent from those with exaggerated weapons. This pattern supports the potential explanation that the trade-off in resource allocation between weapons and nuptial gifts is important in driving the diversity of male mating strategies seen in the dobsonflies, whereas reduced male–male competition in the species producing large spermatophores could be an alternative explanation on their loss of male weapons. Our results shed new light on the evolutionary interplay of multiple sexually selected traits in animals.  相似文献   

15.
    
Researchers have hypothesized that nasal morphology, both in archaic Homo and in recent humans, is influenced by body mass and associated oxygen consumption demands required for tissue maintenance. Similarly, recent studies of the adult human nasal region have documented key differences in nasal form between males and females that are potentially linked to sexual dimorphism in body size, composition, and energetics. To better understand this potential developmental and functional dynamic, we first assessed sexual dimorphism in the nasal cavity in recent humans to determine when during ontogeny male‐female differences in nasal cavity size appear. Next, we assessed whether there are significant differences in nasal/body size scaling relationships in males and females during ontogeny. Using a mixed longitudinal sample we collected cephalometric and anthropometric measurements from n = 20 males and n = 18 females from 3.0 to 20.0+ years of age totaling n = 290 observations. We found that males and females exhibit similar nasal size values early in ontogeny and that sexual dimorphism in nasal size appears during adolescence. Moreover, when scaled to body size, males exhibit greater positive allometry in nasal size compared to females. This differs from patterns of sexual dimorphism in overall facial size, which are already present in our earliest age groups. Sexually dimorphic differences in nasal development and scaling mirror patterns of ontogenetic variation in variables associated with oxygen consumption and tissue maintenance. This underscores the importance of considering broader systemic factors in craniofacial development and may have important implications for the study of patters craniofacial evolution in the genus Homo. Am J Phys Anthropol 153:52–60, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
    
The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of males and females. If the selection pressures and constraints imposed on body size change along environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude environments, males are larger than females, but at colder, high latitudes, females are larger than males. Comparisons to expectations under a Brownian motion model of SSD evolution indicate that this pattern reflects differences in the evolutionary rates and/or trajectories of sex‐specific body sizes. The SSD gradient we found is strongly related to mean annual temperature, but is independent of species richness and body size differences among species within grid cells, suggesting that the biogeography of SSD reflects gradients in sexual and/or fecundity selection, rather than intersexual niche divergence to minimize intraspecific competition. We demonstrate that the SSD gradient is driven by stronger variation in male size than in female size and is independent of clutch mass. This suggests that gradients in sexual selection and male–male competition, rather than fecundity selection to maximize reproductive output by females in seasonal environments, are predominantly responsible for the gradient.  相似文献   

17.
    
This study examines whether the anal fin undergoes secondary sexual development similar to other reproductive traits in salmonids. This hypothesis was tested by comparing the anal‐fin size of female kokanee salmon Oncorhynchus nerka that were in the early and late stages of sexual development. Females in an advanced stage of maturation had significantly larger anal fins relative to females in an early state of maturation (+4–7%), indicating that the anal fin undergoes secondary sexual development. The magnitude of this secondary growth was comparable with snout length (+9–10%), which is known to undergo secondary sexual development in female salmonids. When morphological trait dimensions were compared between the sexes, the anal fin was the only morphological trait found to have a female‐biased sexual size dimorphism. This is the first study to show that the anal fin of female salmonids undergoes secondary sexual development.  相似文献   

18.
Sexual dimorphism of body size and shell shape in European tortoises   总被引:1,自引:0,他引:1  
Adult body size and shape were examined in almost 1400 individuals of the tortoises Testudo graeca , T. hermanni and T. marginata from Greece. The size at maturity was greater in females than in males in all three species. Maximum and mean adult sizes were also greater in females than in males in T. graeca and T. hermanni . Males grew to a larger size than females in T. marginata , and mean adult size was similar in the sexes in this species. Sexual dimorphism of shape (adjusted for size covariate) was shown in most of the characters examined, and the degree of this dimorphism differed significantly among the three species. Differences were related to their contrasting courtship behaviours: horizontal head movements and severe biting in T. marginata , vertical head bobs and carapace butting in T. graeca , and mounting and tail thrusting in T. hermanni . There was no difference in the frequency of observations of courtship or fighting among the three species, but courtship was about 10 times more common than combat in males. All species showed greatest courtship activity in autumn; copulation was rarely observed in T. hermanni (only 0.36% of courting males) and not seen in the other species in the field. Observations made throughout the activity season indicated that feeding was equally common in males and females in all three species. Differences in shape were more likely to be the result of sexual selection than of natural selection for fecundity. Detailed predictions are made for sexual dimorphism of other characters in these species.  相似文献   

19.
    
The mobility hypothesis could explain the evolution of female‐biased size dimorphism if males with a smaller body size and longer legs have an advantage in scramble competition for mates. This hypothesis is tested by performing a selection analysis in the wild on Micrarchus hystriculeus (Westwood) (Phasmatodea), a sexually size dimorphic stick insect endemic to New Zealand. This analysis examined the form and strength of sexual selection on body size, leg lengths (front, mid and hind), and clasper size (a genitalic trait), and also quantified the degree of phenotypic variation and the allometric scaling pattern of these traits. By contrast to the mobility hypothesis, three lines of evidence were found to support significant stabilizing sexual selection on male hind leg length: a significant nonlinear selection gradient, negative static allometry, and a low degree of phenotypic variation. Hind leg length might be under stabilizing selection in males if having average‐sized legs facilitates female mounting or improves a male's ability to achieve the appropriate copulation position. As predicted, a negative allometric scaling pattern and low phenotypic variation of clasper size is suggestive of stabilizing selection and supports the ‘one‐size‐fits‐all’ hypothesis. Opposite to males, the mid and hind leg lengths of females showed positive static allometry. Relatively longer mid and hind leg lengths in larger females might benefit individuals via the better support of their larger abdomens. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 471–484.  相似文献   

20.
    
Studies of sexual selection have tended to concentrate on obvious morphological dimorphisms such as crests, horns, antlers, and other physical displays or weapons; however, traits that show no obvious sexual dimorphism may nevertheless still be under sexual selection. Sexual selection theory generally predicts positive allometry for sexually selected traits. When fighting, male kangaroos use their forelimbs to clasp and hold their opponent and, standing on their tail, bring up their hind legs to kick their opponent. This action requires substantial strength and balance. We examined allometry of forelimb musculature in male and female western grey kangaroos (Macropus fuliginosus) to determine whether selection through male–male competition is associated with sex differences in muscle development. Forelimbs of males are more exaggerated than in females, with relatively greater muscle mass in males than the equivalent muscles in females. Furthermore, while muscles generally showed isometric growth in female forelimbs, every muscle demonstrated positive allometry in males. The significant positive allometry in male forelimb musculature, particularly those muscles most likely involved in male–male combat (a group of muscles involved in grasping: shoulder adduction, elbow flexion; and pulling: arm retraction, elbow flexion), clearly suggests that this musculature is subject to sexual selection. In addition to contributing to locomotion, the forelimbs of male kangaroos can also act as a signal, a weapon, and help in clasping, features that would contribute towards their importance as a sexually selected trait. Males would therefore benefit from well‐developed musculature of the arms and upper body during competition for mates. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 923–931.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号