首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract Darwin envisaged male-male and male-female interactions as mutually supporting mechanisms of sexual selection, in which the best armed males were also the most attractive to females. Although this belief continues to predominate today, it has been challenged by sexual conflict theory, which suggests that divergence in the interests of males and females may result in conflicting sexual selection. This raises the empirical question of how multiple mechanisms of sexual selection interact to shape targeted traits. We investigated sexual selection on male morphology in the sexually dimorphic fly Prochyliza xanthostoma , using indices of male performance in male-male and male-female interactions in laboratory arenas to calculate gradients of direct, linear selection on male body size and an index of head elongation. In male-male combat, the first interaction with a new opponent selected for large body size but reduced head elongation, whereas multiple interactions with the same opponent favored large body size only. In male-female interactions, females preferred males with relatively elongated heads, but male performance of the precopulatory leap favored large body size and, possibly, reduced head elongation. In addition, the amount of sperm transferred (much of which is ingested by females) was an increasing function of both body size and head elongation. Thus, whereas both male-male and male-female interactions favored large male body size, male head shape appeared to be subject to conflicting sexual selection. We argue that conflicting sexual selection may be a common result of divergence in the interests of the sexes.  相似文献   

2.
Theory suggests that the net benefit of allocating resources to a sexual trait depends both on the strength of sexual selection on that trait and on individual condition. This predicts a tight coevolution between sexual dimorphism and condition dependence and suggests that these patterns of within-sex and between-sex variation may share a common genetic and developmental basis. Although condition-dependent expression of sexual traits is widely documented, the extent of covariation between condition dependence and sexual dimorphism remains poorly known. I investigated the effects of condition (larval diet quality) on multivariate sexual dimorphism in the fly Telostylinus angusticollis (Neriidae). Condition determined the direction of sexual size dimorphism and modulated sexual shape dimorphism by affecting allometric slopes and/or intercepts of sexually homologous traits in both sexes. Although the greatest responses to condition manipulation were observed in male sexual traits, both sexual and nonsexual traits exhibited substantial variation in the nature and magnitude of condition effects. Nonetheless, condition dependence and sexual dimorphism were remarkably congruent: variation in the strength of condition effects on male traits explained more than 90% of the variation in the magnitude of sexual dimorphism, whether quantified in terms of trait size or allometric slope. The genetic mechanisms that give rise to multivariate sexual dimorphism in body shape thus function in a strongly condition-dependent manner in this species, suggesting a common genetic basis for body shape variation within and between sexes.  相似文献   

3.
Sexual dimorphism in relation to current selection in the house finch   总被引:3,自引:0,他引:3  
Abstract.— Sexual dimorphism is thought to have evolved in response to selection pressures that differ between males and females. Our aim in this study was to determine the role of current net selection in shaping and maintaining contemporary sexual dimorphism in a recently established population of the house finch ( Carpodacus mexicanus ) in Montana. We found strong differences between sexes in direction of selection on sexually dimorphic traits, significant heritabilities of these traits, and a close congruence between current selection and observed sexual dimorphism in Montana house finches. Strong directional selection on sexually dimorphic traits and similar intensities of selection in each sex suggested that sexual dimorphism arises from adaptive responses in males and females, with both sexes being far from their local fitness optimum. This pattern is expected when a recently established population experiences continuous immigration from ecologically distinct areas of a species range or as a result of widely fluctuating selection pressures, as found in our study. Strong and sexually dimorphic selection pressures on heritable morphological traits, in combination with low phenotypic and genetic covariation among these traits during growth, may have accounted for close congruence between current selection and observed sexual dimorphism in the house finch. This conclusion is consistent with the profound adaptive population divergence in sexual dimorphism that accompanied very successful colonization of most of the North America by the house finch over the last 50 years.  相似文献   

4.
Abstract The degree of sexual dimorphism in a trait may be determined directly by disruptive selection, as well as by correlations with other traits under selection. We grew seeds from nine populations of the dioecious plant Silene latifolia in a common‐garden experiment to determine whether phenotypic variation and correlations existed for floral, leaf and resource allocation traits, and whether this variation had a genetic component. We also determined the traits which were sexually dimorphic, the degree of dimorphism, and whether it varied among populations. Seven traits exhibited among‐population variation and sexual dimorphism. Variation in the degree of dimorphism occurred only for two traits, suggesting that dimorphism may be evolving more slowly than trait means. Males had more, smaller flowers, shorter leaves, and allocated less of their total biomass to stems and more to leaves than females. Flower production was the most sexually dimorphic trait and was correlated with all measured traits. Most traits exhibited significant correlations between the sexes. The pattern of correlations and the degree of sexual dimorphism among traits lead us to suggest that intrasexual selection for an exaggerated floral display in males has indirectly led to sexual dimorphism in a host of other traits.  相似文献   

5.
Males and females share a genome and express many shared phenotypic traits, which are often selected in opposite directions. This generates intralocus sexual conflict that may constrain trait evolution by preventing the sexes from reaching their optimal phenotype. Furthermore, if present across multiple loci, intralocus sexual conflict can result in a gender load that may diminish the benefits of sexual selection and help maintain genetic variation for fitness. Despite the importance of intralocus sexual conflict, surprisingly few empirical studies conclusively demonstrate its operation. We show that the pattern of multivariate selection acting on three sexually dimorphic life-history traits (development time, body size, and longevity) in the Indian meal moth, Plodia interpunctella, is opposing for the sexes. Moreover, we combined our estimates of selection with the additive genetic variance-covariance matrix (G) to predict the evolutionary response of the life-history traits in the sexes and showed that the angle between the vector of responses and the vector of sexually antagonistic selection was almost orthogonal at 84.70°. Thus, G biases the predicted response of life-history traits in the sexes away from the direction of sexually antagonistic selection, confirming the presence of strong intralocus sexual conflict in this species. Despite this, sexual dimorphism has evolved in all of the life-history traits examined suggesting that mechanism(s) have evolved to resolve this conflict and allow the sexes to reach their life-history optima. We argue that intralocus sexual conflict is likely to play an important role in the evolution of divergent life-history strategies between the sexes in this species.  相似文献   

6.
Recent work on birds suggests that certain morphological differences between the sexes may have evolved as an indirect consequence of sexual selection because they offset the cost of bearing extravagant ornaments used for fighting or mate attraction. For example, long-tailed male sunbirds and widowbirds also have longer wings than females, perhaps to compensate for the aerodynamic costs of tail elaboration. We used comparative data from 57 species to investigate whether this link between sexual dimorphism in wing and tail length is widespread among long-tailed birds. We found that within long-tailed families, variation in the extent of tail dimorphism was associated with corresponding variation in wing dimorphism. One nonfunctional explanation of this result is simply that the growth of wings and tails is controlled by a common developmental mechanism, such that long-tailed individuals inevitably grow long wings as well. However, this hypothesis cannot account for a second pattern in our data set: as predicted by aerodynamic theory, we found that, comparing across long-tailed families, sexual dimorphism in wing length varied with tail shape as well as with sex differences in tail length. Thus, wing dimorphism was generally greater in species with aerodynamically costly graduated tails than in birds with cheaper, streamer-shaped tails. This result was not caused by confounding phylogenetic effects, because it persisted when phylogeny was controlled for, using an independent comparisons method. Our findings therefore confirm that certain aspects of sexual dimorphism may sometimes have evolved through selection for traits that reduce the costs of elaborate sexually selected characters. We suggest that future work aimed at understanding sexual selection by investigating patterns of sexual dimorphism should attempt to differentiate between the direct and indirect consequences of sexual selection.  相似文献   

7.
Field cricket species are ideal model organisms for the study of sexual selection because cricket calling songs, used to attract mating partners, are pronouncedly sexually dimorphic. However, few studies have focused on other sexually dimorphic traits of field crickets. The horn‐headed cricket, Loxoblemmus doenitzi, exhibits exaggerated sexual dimorphism in head shape: males have flat heads with triangular horns, while females lack horns. This study examines the relationship between horn length, male calling efforts and diet quality. Horn length was not found to be significantly correlated with calling efforts. When diet was manipulated for late‐stage nymphs, calling efforts in the group with poor‐quality diet treatment was significantly lower than that of crickets in the group with high‐quality diet treatment. However, horn length was not affected by diet quality. The implication of these results in the context of the evolution of multiple signals and sexual dimorphism is discussed.  相似文献   

8.
Investigating sexual dimorphism is important for our understanding of its influence on reproductive strategies including male-male competition, mate choice, and sexual conflict. Measuring physical traits in wild animals can be logistically challenging and disruptive for the animals. Therefore body size and ornament variation in wild primates have rarely been quantified. Gorillas are amongst the most sexually dimorphic and dichromatic primates. Adult males (silverbacks) possess a prominent sagittal crest, a pad of fibrous and fatty tissue on top of the head, have red crest coloration, their saddle appears silver, and they possess a silverline along their stomach. Here we measure levels of sexual dimorphism and within-male variation of body length, head size, and sexual dichromatism in a population of wild western gorillas using photogrammetry. Digital photogrammetry is a useful and precise method to measure sexual dimorphism in physical traits yielding sexual dimorphism indices (ISD), similar to those derived from traditional measurements of skeletal remains. Silverbacks were on an average 1.23 times longer in body length than adult females. Sexual dimorphism of head size was highest in measures of crest size (max ISD: 60.4) compared with measures of facial height (max ISD: 24.7). The most sexually dimorphic head size measures also showed the highest within-sex variation. We found no clear sex differences in crest coloration but there was large sexual dichromatism with high within-male variation in saddle coloration and silverline size. Further studies should examine if these sexually dimorphic traits are honest signals of competitive ability and confer an advantage in reproductive success.  相似文献   

9.
Sexual size dimorphism of adults proximately results from a combination of sexually dimorphic growth patterns and selection on growing individuals. Yet, most studies of the evolution of dimorphism have focused on correlates of only adult morphologies. Here we examined the ontogeny of sexual size dimorphism in an isolated population of the house finch (Carpodacus mexicanus). Sexes differed in growth rates and growth duration; in most traits, females grew faster than males, but males grew for a longer period. Sexual dimorphism in bill traits (bill length, width, depth) and in body traits (wing, tarsus, and tail length; mass) developed during different periods of ontogeny. Growth of bill traits was most different between sexes during the juvenile period (after leaving the nest), whereas growth of body traits was most sexually dimorphic during the first few days after hatching. Postgrowth selection on juveniles strongly influenced sexual dimorphism in all traits; in some traits, this selection canceled or reversed dimorphism patterns produced by growth differences between sexes. The net result was that adult sexual dimorphism, to a large degree, was an outcome of selection for survival during juvenile stages. We suggest that previously documented fast and extensive divergence of house finch populations in sexual size dimorphism may be partially produced by distinct environmental conditions during growth in these populations.  相似文献   

10.
Genitalia are among the most variable of morphological traits, and recent research suggests that this variability may be the result of sexual selection. For example, large bacula may undergo post‐copulatory selection by females as a signal of male size and age. This should lead to positive allometry in baculum size. In addition to hyperallometry, sexually selected traits that undergo strong directional selection should exhibit high phenotypic variation. Nonetheless, in species in which pre‐copulatory selection predominates over post‐copulatory selection (such as those with male‐biased sexual size dimorphism), baculum allometry may be isometric or exhibit negative allometry. We tested this hypothesis using data collected from two highly dimorphic species of the Mustelidae, the American marten (Martes americana) and the fisher (Martes pennanti). Allometric relationships were weak, with only 4.5–10.1% of the variation in baculum length explained by body length. Because of this weak relationship, there was a large discrepancy in slope estimates derived from ordinary least squares and reduced major axis regression models. We conclude that stabilizing selection rather than sexual selection is the evolutionary force shaping variation in baculum length because allometric slopes were less than one (using the ordinary least squares regression model), a very low proportion of variance in baculum length was explained by body length, and there was low phenotypic variability in baculum length relative to other traits. We hypothesize that this pattern occurs because post‐copulatory selection plays a smaller role than pre‐copulatory selection (manifested as male‐biased sexual size dimorphism). We suggest a broader analysis of baculum allometry and sexual size dimorphism in the Mustelidae, and other taxonomic groups, coupled with a comparative analysis and with phylogenetic contrasts to test our hypothesis. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 955–963.  相似文献   

11.
Sexual selection is generally held responsible for the exceptional diversity in secondary sexual traits in animals. Mating system evolution is therefore expected to profoundly affect the covariation between secondary sexual traits and mating success. Whereas there is such evidence at the interspecific level, data within species remain scarce. We here investigate sexual selection acting on the exaggerated male fore femur and the male wing in the common and widespread dung flies Sepsis punctum and S. neocynipsea (Diptera: Sepsidae). Both species exhibit intraspecific differences in mating systems and variation in sexual size dimorphism (SSD) across continents that correlates with the extent of male–male competition. We predicted that populations subject to increased male–male competition will experience stronger directional selection on the sexually dimorphic male foreleg. Our results suggest that fore femur size, width and shape were indeed positively associated with mating success in populations with male‐biased SSD in both species, which was not evident in conspecific populations with female‐biased SSD. However, this was also the case for wing size and shape, a trait often assumed to be primarily under natural selection. After correcting for selection on overall body size by accounting for allometric scaling, we found little evidence for independent selection on any of these size or shape traits in legs or wings, irrespective of the mating system. Sexual dimorphism and (foreleg) trait exaggeration is therefore unlikely to be driven by direct precopulatory sexual selection, but more so by selection on overall size or possibly selection on allometric scaling.  相似文献   

12.
Male hummingbirds have repeatedly evolved sexually dimorphic tails that they use as ornaments during courtship. We examine how male ornament evolution is reflected in female morphology. Lande's two-step model of the evolution of dimorphism predicts that γ (the genetic correlation between the sexes) causes trait elaboration to first evolve quickly in both sexes, then dimorphism evolves more slowly. On the hummingbird phylogeny, tail length does not fit this two-step model; although hummingbirds repeatedly evolved ornamental, elongated tails, dimorphism evolves on the same phylogenetic branch as elongation, implying that γ quickly evolves to be low over phylogenetic timescales. Male “bee” hummingbirds have evolved diverse rectrix shapes that they use to produce sound. Female morphologies exhibit subtle, pervasive correlations with male morphology. No female-adaptive hypotheses explain these correlations, since females do not also make sounds with their tail. Subtle shape similarity has arisen through the genetic correlation with males, and is subject to intralocus sexual conflict. Intralocus sexual conflict may produce increased phenotypic variation of female ornaments. Other evolutionary constraints on tail morphology include a developmental correlation between neighboring tail-feathers, biasing tail elaboration to occur most often at the ends of the feather tract (rectrix 5 or 1) and not the middle.  相似文献   

13.
Sexual dimorphism evolves when selection favors different phenotypic optima between the sexes. Such sexually antagonistic selection creates intralocus sexual conflict when traits are genetically correlated between the sexes and have sex‐specific optima. Brown anoles are highly sexually dimorphic: Males are on average 30% longer than females and 150% heavier in our study population. Viability selection on body size is known to be sexually antagonistic, and directional selection favors large male size whereas stabilizing selection constrains females to remain small. We build on previous studies of viability selection by measuring sexually antagonistic selection using reproductive components of fitness over three generations in a natural population of brown anoles. We estimated the number of offspring produced by an individual that survived to sexual maturity (termed RSV), a measure of individual fitness that includes aspects of both individual reproductive success and offspring survival. We found directional selection on male body size, consistent with previous studies of viability selection. However, selection on female body size varied among years, and included periods of positive directional selection, quadratic stabilizing selection, and no selection. Selection acts differently in the sexes based on both survival and reproduction and sexual conflict appears to be a persistent force in this species.  相似文献   

14.
Sexual selection is thought to drive the evolution of sexually dimorphic traits that increase male reproductive success. Despite a large degree of sexual dimorphism among haplorhine primates, phenotypic traits that may influence the reproductive success of males are largely unstudied due to long life spans and the difficulties in quantifying such traits non-invasively. Here we employ digital photogrammetry of body length and crest size, as well as ranking of the gluteal muscle size, to test whether these sexually dimorphic traits are associated with long-term measures of male reproductive success in western gorillas. Among 19 adult male gorillas monitored for up to 12.5 years, we found that all three phenotypic traits were positively correlated with the average number of mates per male, but only crest size and gluteal muscle size were significantly correlated with offspring survival and the annual rate of siring offspring that survive to weaning age. We discuss why such sexually dimorphic traits might be under ongoing selection in gorillas and other species.  相似文献   

15.
The hypothesis that sexual selection drives the evolution of condition dependence is not firmly supported by empirical evidence, and the process remains poorly understood. First, even though sexual competition typically involves multiple traits, studies usually compare a single sexual trait with a single "control" trait, ignoring variation among sexual traits and raising the possibility of sampling bias. Second, few studies have addressed the genetic basis of condition dependence. Third, even though condition dependence is thought to result from a form of sex-specific epistasis, the evolution of condition dependence has never been considered in relation to intralocus sexual conflict. We argue that condition dependence may weaken intersexual genetic correlations and facilitate the evolution of sexual dimorphism. To address these questions, we manipulated an environmental factor affecting condition (larval diet) and examined its effects on four sexual and four nonsexual traits in Prochyliza xanthostoma adults. As predicted by theory, the strength of condition dependence increased with degree of exaggeration among male traits. Body shape was more condition dependent in males than in females and, perhaps as a result, genetic and environmental effects on body shape were congruent in males, but not in females. However, of the four male sexual traits, only head length was significantly larger in high-condition males after controlling for body size. Strong condition dependence was associated with reduced intersexual genetic correlation. However, homologous male and female traits exhibited correlated responses to condition, suggesting an intersexual genetic correlation for condition dependence itself. Our findings support the role of sexual selection in the evolution of condition dependence, but reveal considerable variation in condition dependence among sexual traits. It is not clear whether the evolution of condition dependence has mitigated or exacerbated intralocus sexual conflict in this species.  相似文献   

16.
Leutenegger and Cheverud (1982, 1985) propose a hypothesis to explain why larger primates are more sexually dimorphic in body weight and canine size. Their hypothesis states that any factor selecting for an evolutionary increase in body size will produce an increase in sexual dimorphism in any character if either heritability or phenotypic variability is greater in males than in females for that character. They cite no evidence for heritability but give some data to suggest that males are, in fact, more variable than females. We test the latter proposition more fully using measurements on the dentitions of platyrrhine primates. Male and female phenotypic variances are not significantly different in most cases. Cases of greater male phenotypic variance are not limited to sexually dimorphic species. We conclude that the hypothesis of Leutenegger and Cheverud does not explain the observed patterns of dental sexual dimorphism, at least in platyrrhines.  相似文献   

17.
Sexual selection has been invoked as a major force in the evolution of secondary sexual traits, including sexually dimorphic colourations. For example, previous studies have shown that display complexity and elaborate ornamentation in lizards are associated with variables that reflect the intensity of intrasexual selection. However, these studies have relied on techniques of colour analysis based on human – rather than lizard – visual perception. Here, we use reflectance spectrophotometry and visual modelling to quantify sexual dichromatism considering the overall colour patterns of lacertids, a lizard clade in which visual signalling has traditionally been underrated. These objective methods of colour analysis reveal a large, previously unreported, degree of sexual dichromatism in lacertids. Using a comparative phylogenetic approach, we further demonstrate that sexual dichromatism is positively associated with body size dimorphism (an index of intrasexual selection), suggesting that conspicuous coloration in male lacertids has evolved to improve opponent assessment under conditions of intense male–male competition. Our findings provide the first evidence for the covariation of sexual dichromatism and sexual size dimorphism in lacertids and suggest that the prevalent role of intrasexual selection in the evolution of ornamental coloration is not restricted to the iguanian lineage, but rather may be a general trend common to many diurnal lizards.  相似文献   

18.
Adaptive divergence of phenotypes, such as sexual dimorphism or adaptive speciation, can result from disruptive selection via competition for limited resources. Theory indicates that speciation and sexual dimorphism can result from identical ecological conditions, but co-occurrence is unlikely because whichever evolves first should dissipate the disruptive selection necessary to drive evolution of the other. Here, we consider ecological conditions in which disruptive selection can act along multiple ecological axes. Speciation in lake populations of threespine sticklebacks (Gasterosteus aculeatus) has been attributed to disruptive selection due to competition for resources. Head shape in sticklebacks is thought to reflect adaptation to different resource acquisition strategies. We measure sexual dimorphism and species variation in head shape and body size in stickleback populations in two lakes in British Columbia, Canada. We find that sexual dimorphism in head shape is greater than interspecific differences. Using a numerical simulation model that contains two axes of ecological variation, we show that speciation and sexual dimorphism can readily co-occur when the effects of loci underlying sexually dimorphic traits are orthogonal to those underlying sexually selected traits.  相似文献   

19.
Sexually dimorphic traits are likely to have evolved through sexually antagonistic selection. However, recent empirical data suggest that intralocus sexual conflict often persists, even when traits have diverged between males and females. This implies that evolved dimorphism is often incomplete in resolving intralocus conflict, providing a mechanism for the maintenance of genetic variance in fitness-related traits. We used experimental evolution in Drosophila melanogaster to directly test for ongoing conflict over a suite of sexually dimorphic cuticular hydrocarbons (CHCs) that are likely targets of sex-specific selection. Using a set of experimental populations in which the transmission of genetic material had been restricted to males for 82 generations, we show that CHCs did not evolve, providing experimental evidence for the absence of current intralocus sexual conflict over these traits. The absence of ongoing conflict could indicate that CHCs have never been the target of sexually antagonistic selection, although this would require the existing dimorphism to have evolved via completely sexlinked mutations or as a result of former, but now absent, pleiotropic effects of the underlying loci on another trait under sexually antagonistic selection. An alternative interpretation, and which we believe to be more likely, is that the extensive CHC sexual dimorphism is the result of past intralocus sexual conflict that has been fully resolved, implying that these traits have evolved genetic independence between the sexes and that genetic variation in them is therefore maintained by alternative mechanisms. This latter interpretation is consistent with the known roles of CHCs in sexual communication in this species and with previous studies suggesting the genetic independence of CHCs between males and females. Nevertheless, direct estimates of sexually antagonistic selection will be important to fully resolve these alternatives.  相似文献   

20.
Parents should differentially invest in sons or daughters depending on the sex‐specific fitness returns from male and female offspring. In species with sexually selected heritable male characters, highly ornamented fathers should overproduce sons, which will be more sexually attractive than sons of less ornamented fathers. Because of genetic correlations between the sexes, females that express traits which are under selection in males should also overproduce sons. However, sex allocation strategies may consist in reaction norms leading to spatiotemporal variation in the association between offspring sex ratio (SR) and parental phenotype. We analysed offspring SR in barn swallows (Hirundo rustica) over 8 years in relation to two sexually dimorphic traits: tail length and melanin‐based ventral plumage coloration. The proportion of sons increased with maternal plumage darkness and paternal tail length, consistently with sexual dimorphism in these traits. The size of the effect of these parental traits on SR was large compared to other studies of offspring SR in birds. Barn swallows thus manipulate offspring SR to overproduce ‘sexy sons’ and potentially to mitigate the costs of intralocus sexually antagonistic selection. Interannual variation in the relationships between offspring SR and parental traits was observed which may suggest phenotypic plasticity in sex allocation and provides a proximate explanation for inconsistent results of studies of sex allocation in relation to sexual ornamentation in birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号