首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have determined the subunit stoichiometry of chicken neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes by quantitation of the amount of radioactivity in individual subunits of [35S] methionine-labeled receptors. The chicken neuronal nicotinic acetylcholine receptor appears to be a pentamer of two alpha 4 acetylcholine-binding subunits and three beta 2 structural subunits. We also show that these expressed receptors bind L-[3H]nicotine with high affinity, are transported to the surface of the oocyte outer membrane, and cosediment on sucrose gradients with acetylcholine receptors isolated from chicken brain. Using this unique and generally applicable method of determining subunit stoichiometry of receptors expressed in oocytes, we obtained the expected (alpha 1) 2 beta 1 gamma delta stoichiometry for muscle-type acetylcholine receptors assembled from coexpression of either Torpedo alpha 1 or human alpha 1 subunits, with Torpedo beta 1, gamma, and delta subunits.  相似文献   

2.
Immunohistochemical studies have previously shown that both the chick brain and chick ciliary ganglion neurons contain a component which shares antigenic determinants with the main immunogenic region of the nicotinic acetylcholine receptor from electric organ and skeletal muscle. Here we describe the purification and initial characterization of this putative neuronal acetylcholine receptor. The component was purified by monoclonal antibody affinity chromatography. The solubilized component sediments on sucrose gradients as a species slightly larger than Torpedo acetylcholine receptor monomers. It was affinity labeled with bromo[3H]acetylcholine. Labeling was prevented by carbachol, but not by alpha-bungarotoxin. Two subunits could be detected in the affinity-purified component, apparent molecular weights 48 000 and 59 000. The 48 000 molecular weight subunit was bound both by a monoclonal antibody directed against the main immunogenic region of electric organ and skeletal muscle acetylcholine receptor and by antisera raised against the alpha subunit of Torpedo receptor. Evidence suggests that there are two alpha subunits in the brain component. Antisera from rats immunized with the purified brain component exhibited little or no cross-reactivity with Torpedo electric organ or chick muscle acetylcholine receptor. One antiserum did, however, specifically bind to all four subunits of Torpedo receptor. Experiments to be described elsewhere (J. Stollberg et al., unpublished results) show that antisera to the purified brain component specifically inhibit the electrophysiological function of acetylcholine receptors in chick ciliary ganglion neurons without inhibiting the function of acetylcholine receptors in chick muscle cells. All of these properties suggest that this component is a neuronal nicotinic acetylcholine receptor with limited structural homology to muscle nicotinic acetylcholine receptor.  相似文献   

3.
Nicotinic acetylcholine receptor of the electric ray Torpedo is the most comprehensively characterized neurotransmitter receptor. It consists of five subunits (alpha2beta gammadelta) amino acid sequences of which were determined by cDNA cloning and sequencing. The shape and size of the receptor were determined by electron cryomicroscopy. It has two agonist/competitive antagonist binding sites which are located between subunits near the membrane surface. The receptor ion channel is formed by five transmembrane helices (M2) of all five subunits. The position of the binding site for noncompetitive ion channel blockers was found by photoaffinity labelling and site-directed mutagenesis. The intrinsic feature of the receptor structure is the position of the agonist/competitive antagonist binding sites in close vicinity to the ion channel spanning the bilayer membrane. This peculiarity may substantially enhance allosteric transitions transforming the ligand binding into the channel opening and physiological response. Muscle nicotinic acetylcholine receptors from birds and mammals are also pentaoligomers consisting of four different subunits (alpha2beta gammadelta or alpha2beta epsilondelta) with high homology to the Torpedo receptor. Apparently, the pentaoligomeric structure is the main feature of all nicotinic, both muscle and neuronal, receptors. However, the neuronal receptors are formed only by two subunit types (alpha and beta) or are even pentahomomers (alpha7 neuronal receptors). All nicotinic receptors are ligand-gated ion channel, the properties of the channels being essentially determined by amino acid residues forming M2 transmembrane fragments.  相似文献   

4.
K Imoto  T Konno  J Nakai  F Wang  M Mishina  S Numa 《FEBS letters》1991,289(2):193-200
The channel pore of the nicotinic acetylcholine receptor (AChR) has been investigated by analysing single-channel conductances of systematically mutated Torpedo receptors expressed in Xenopus oocytes. The mutations mainly alter the size and polarity of uncharged polar amino acid residues of the acetylcholine receptor subunits positioned between the cytoplasmic ring and the extracellular ring. From the results obtained, we conclude that a ring of uncharged polar residues comprising threonine 244 of the alpha-subunit (alpha T244), beta S250, gamma T253 and delta S258 (referred to as the central ring) and the anionic intermediate ring, which are adjacent to each other in the assumed alpha-helical configuration of the M2-containing transmembrane segment, together form a narrow channel constriction of short length, located close to the cytoplasmic side of the membrane. Our results also suggest that individual subunits, particularly the gamma-subunit, are asymmetrically positioned at the channel constriction.  相似文献   

5.
Screening of a rat brain cDNA library with a radiolabeled probe made from an alpha 3 cDNA (Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemanns, S., and Patrick, J. (1986) Nature 319, 368-374) resulted in the isolation of a clone whose sequence encodes a protein, beta 3, which is homologous (40-55% amino acid sequence identity) to previously described neuronal nicotinic acetylcholine receptor subunits. The encoded protein has structural features found in other nicotinic acetylcholine receptor (nAChR) subunits. Two cysteine residues that correspond to cysteins 128 and 142 of the Torpedo nAChR alpha subunit are present in beta 3. Absent from beta 3 are 2 adjacent cysteine residues that correspond to cysteines 192 and 193 of the Torpedo subunit. In situ hybridization histochemistry, performed using probes derived from beta 3 cDNAs, demonstrated that the beta 3 gene is expressed in the brain. Thus, beta 3 is the fifth member of the nAChR gene family that is expressed in the brain. The pattern of beta 3 gene expression partially overlaps with that of the neuronal nAChR subunit genes alpha 3, alpha 4, or beta 2. These results lead us to propose that the beta 3 gene encodes a neuronal nAChR subunit.  相似文献   

6.
We have studied the role of different amino acids in the M2 transmembrane domain of the α7 neuronal nicotinic receptor by mutating residues that differ from the ones located at the same positions in other α (α2-α10) or β (β2-β4) subunits. Our aim was to investigate the contribution of these amino acids to the peculiar kinetic and inward rectification properties that differentiate the homomeric α7 receptor from other nicotinic receptors. Mutations of several residues strongly modified receptor function. We found that Thr245 had the most profound effect when mutated to serine, an amino acid present in all heteromeric receptors composed of α and β subunits, by dramatically increasing the maximal current, decreasing the decaying rate of the currents and decreasing receptor rectification. Some mutants also showed altered agonist-binding properties as revealed by shifts in the dose-response curves for acetylcholine. We conclude that residues in the M2 segment and flanking regions contribute to the unusual properties of the α7 receptor, especially to its characteristic fast kinetic behavior and strong inward rectification and furthermore to the potency of agonists.  相似文献   

7.
A novel inhibitor of nicotinic acetylcholine receptors (nAChRs), psi-conotoxin Piiif, was isolated from the venom of Conus purpurascens and found to have the sequence GOOCCLYGSCROFOGCYNALCCRK-NH2. The sequence is highly homologous to that of psi-conotoxin Piiie, a previously identified noncompetitive inhibitor of Torpedo electroplax nAChR, also isolated from C. purpurascens. Both psi-conotoxins block Torpedo and mouse nicotinic acetylcholine receptors (nAChRs), but psi-Piiif is less potent by a factor of 10(1)-10(2). A high-resolution structure of psi-Piiif was determined by NMR and molecular modeling calculations. Psi-Piiif analogues containing [(13)C]-labeled cysteine at selected positions were synthesized to resolve spectral overlap of Cys side chain proton signals. The structures are well-converged, with backbone atom position RMSDs of 0.21 A for the main body of the peptide between residues 4 and 22 and 0.47 A for all residues. The overall backbone conformation is closely similar to psi-Piiie, the main difference being in the degree of conformational disorder at the two termini. Psi-Piiie and psi-Piiif have similar locations of positive charge density, although psi-Piiif has a lower overall charge. One disulfide bridge of psi-Piiif appears to undergo dynamic conformational fluctuations based on both the model and on experimental observation. Chimeras in which the three intercysteine loops were swapped between psi-Piiie and psi-Piiif were tested for inhibitory activity against Torpedo nAChRs. The third loop, which contains no charged residues in either peptide, is the prime determinant of potency in these psi-conotoxins.  相似文献   

8.
The nicotinic acetylcholine receptor (AChR) and the serotonin type 3 receptor (5HT3R) are members of the ligand-gated ion channel gene family. Both receptors are inhibited by nanomolar concentrations of d-tubocurarine (curare) in a competitive fashion. Chemical labeling studies on the AChR have identified tryptophan residues on the gamma (gammaTrp-55) and delta (deltaTrp-57) subunits that interact with curare. Comparison of the sequences of these two subunits with the 5HT3R shows that a tryptophan residue is found in the homologous position in the 5HT3R (Trp-89), suggesting that this residue may be involved in curare-5HT3R interactions. Site-directed mutagenesis at position Trp-89 markedly reduces the affinity of the 5HT3R for the antagonists curare and granisetron but has little effect on the affinity for the agonist serotonin. To further examine the role of this region of the receptor in ligand-receptor interactions, alanine-scanning mutagenesis analysis of the region centered on Trp-89 (Thr-85 to Trp-94) was carried out, and the ligand binding properties of the mutant receptors were determined. Within this region of the receptor, curare affinity is reduced by substitution only at Trp-89, whereas serotonin affinity is reduced only by substitution at Arg-91. On the other hand, granisetron affinity is reduced by substitutions at Trp-89, Arg-91, and Tyr-93. This differential effect of substitutions on ligand affinity suggests that different ligands may have different points of interaction within the ligand-binding pocket. In addition, the every-other-residue periodicity of the effects on granisetron affinity strongly suggests that this region of the ligand-binding site of the 5HT3R (and by inference, other members of the ligand-gated ion channel family) is in a beta-strand conformation.  相似文献   

9.
Results of affinity-labeling studies and mutational analyses provide evidence that the agonist binding sites of the nicotinic acetylcholine receptor (nAChR) are located at the alpha-gamma and alpha-delta subunit interfaces. For Torpedo nAChR, photoaffinity-labeling studies with the competitive antagonist d-[(3)H]tubocurarine (dTC) identified two tryptophans, gammaTrp-55 and deltaTrp-57, as the primary sites of photolabeling in the non-alpha subunits. To characterize the importance of gammaTrp-55 and deltaTrp-57 to the interactions of agonists and antagonists, Torpedo nAChRs were expressed in Xenopus oocytes, and equilibrium binding assays and electrophysiological recordings were used to examine the functional consequences when either or both tryptophans were mutated to leucine. Neither substitution altered the equilibrium binding of dTC. However, the deltaW57L and gammaW55L mutations decreased acetylcholine (ACh) binding affinity by 20- and 7,000-fold respectively. For the wild-type, gammaW55L, and deltaW57L nAChRs, the concentration dependence of channel activation was characterized by Hill coefficients of 1.8, 1.1, and 1.7. For the gammaW55L mutant, dTC binding at the alpha-gamma site acts not as a competitive antagonist but as a coactivator or partial agonist. These results establish that interactions with gamma Trp-55 of the Torpedo nAChR play a crucial role in agonist binding and in the agonist-induced conformational changes that lead to channel opening.  相似文献   

10.
11.
Abstract: In the transmitter-gated ion channel class of receptors, the members of which are all believed to be heterooligomers, the number and arrangement of the subunits are only known with any certainty for the nicotinic acetylcholine receptor from Torpedo electric fish. That receptor has been shown to possess a pentameric rosette structure, with five homologous subunits (α2βγδ) arranged to enclose the central ion channel. The data were obtained by electron image analysis of two-dimensional receptor arrays, which form as a consequence of that receptor's exceptionally high abundance in the Torpedo membranes and are therefore not attainable for other receptors. We have applied another direct approach to determine the quaternary structure of native ionotropic GABA receptors. We have purified those receptors from porcine brain cortex and analysed the rotational symmetry of isolated receptors visualized by electron microscopy. The results show the receptor to have a pentameric structure with a central water-filled pore, which can now be said to be characteristic of the entire superfamily.  相似文献   

12.
R Plümer  G Fels  A Maelicke 《FEBS letters》1984,178(2):204-208
Rabbit immune sera and mouse monoclonal antibodies were raised against the synthetic peptide Tyr-Cys-Glu-Ile-Ile-Val matching in sequence residues 127-132 of the alpha-subunit of all nicotinic acetylcholine receptors sequenced so far. Representative cholinergic ligands did not interfere with the binding of these antibodies to the receptor from Torpedo marmorata, indicating that this sequence is not part of the binding sites for cholinergic ligands. The applicability of antigenic sites analysis to the mapping of functional sites on receptor proteins is discussed.  相似文献   

13.
Chronic exposure to nicotine, as in tobacco smoking, up-regulates nicotinic acetylcholine receptor surface expression in neurons. This up-regulation has been proposed to play a role in nicotine addiction and withdrawal. The regulatory mechanisms behind nicotine-induced up-regulation of surface nicotinic acetylcholine receptors remain to be determined. It has recently been suggested that nicotine stimulation acts through increased assembly and maturation of receptor subunits into functional pentameric receptors. Studies of muscle nicotinic acetylcholine receptors suggest that the availability of unassembled subunits in the endoplasmic reticulum can be regulated by the ubiquitin-proteosome pathway, resulting in altered surface expression. Here, we describe a role for ubiquilin-1, a ubiquitin-like protein with the capacity to interact with both the proteosome and ubiquitin ligases, in regulating nicotine-induced up-regulation of neuronal nicotinic acetylcholine receptors. Ubiquilin-1 interacts with unassembled alpha3 and alpha4 subunits when coexpressed in heterologous cells and interacts with endogenous nicotinic acetylcholine receptors in neurons. Coexpression of ubiquilin-1 and neuronal nicotinic acetylcholine receptors in heterologous cells dramatically reduces the expression of the receptors on the cell surface. In cultured superior cervical ganglion neurons, expression of ubiquilin-1 abolishes nicotine-induced up-regulation of nicotinic acetylcholine receptors but has no effect on the basal level of surface receptors. Coimmunostaining shows that the interaction of ubiquilin-1 with the alpha3 subunit draws the receptor subunit and proteosome into a complex. These data suggest that ubiquilin-1 limits the availability of unassembled nicotinic acetylcholine receptor subunits in neurons by drawing them to the proteosome, thus regulating nicotine-induced up-regulation.  相似文献   

14.
Abstract— The in vitro uptake of exogenous acetylcholine by isolated presynaptic vesicles has been demonstrated in a new system. A preparation of vesicles from Torpedo californica electroplax was developed in which acetylcholinesterase and acetylcholine receptor activity were blocked. The vesicles bound acetylcholine with Kd 1.58 μM, the maximum amount bound being 26 pmol per g of original tissue, or 52 molecules per vesicle. Nicotinic drugs blocked binding, but muscarinic and noncholinergic drugs did not. The relative potency of nicotinic drugs differed greatly from their potency on Torpedo receptor. Sephadex chromatography showed that 26% of the binding was irreversible. The relationship of the binding to acetylcholine uptake and storage was discussed.  相似文献   

15.
The nicotinic acetylcholine receptor from Torpedo was immobilised in tethered membranes. Surface plasmon resonance was used to quantify the binding of ligands and antibodies to the receptor. The orientation and structural integrity of the surface-reconstituted receptor was probed using monoclonal antibodies, demonstrating that approximately 65% of the receptors present their ligand-binding site towards the lumen of the flow cell and that at least 85% of these receptors are structurally intact. The conformation of the receptor in tethered membranes was investigated with Fourier transform infrared spectroscopy and found to be practically identical to that of receptors reconstituted in lipid vesicles. The affinity of small receptor ligands was determined in a competition assay against a monoclonal antibody directed against the ligand-binding site which yielded dissociation constants in agreement with radioligand binding assays. The presented method for the functional immobilisation of the nicotinic acetylcholine receptor in tethered membranes might be generally applicable to other membrane proteins.  相似文献   

16.
The nitromethylene heterocyclic compound 2(nitromethylene)tetrahydro)1,3-thiazine (NMTHT) inhibits the binding of [125I]alpha-bungarotoxin to membranes prepared from cockroach (Periplaneta americana) nerve cord and fish (Torpedo californica) electric organ. Electrophysiological studies on the cockroach fast coxal depressor motorneuron (Df) reveal a dose-dependent depolarization in response to bath-applied NMTHT. Responses to ionophoretic application of NMTHT onto the cell-body membrane of motorneuron Df are suppressed by bath-applied mecamylamine (1.0 x 10(-4) M) and alpha-bungarotoxin (1.0 x 10(-7) M). These findings, together with the detection of a reversal potential close to that estimated for acetylcholine, provide evidence for an agonist action of this nitromethylene on an insect neuronal nicotinic acetylcholine receptor. The binding of [3H]H12-histrionicotoxin to Torpedo membranes was enhanced in the presence of NMTHT indicating an agonist action at this vertebrate peripheral nicotinic acetylcholine receptor. NMTHT is ineffective in radioligand binding assays for rat brain GABAA receptors, rat brain L-glutamate receptors and insect (Musca domestica) L-glutamate receptors. Partial block of rat brain muscarinic acetylcholine receptors is detected at millimolar concentrations of NMTHT. Thus nitromethylenes appear to exhibit selectivity for acetylcholine receptors and exhibit an agonist action at nicotinic acetylcholine receptors.  相似文献   

17.
D C Chiara  Y Xie  J B Cohen 《Biochemistry》1999,38(20):6689-6698
Photoaffinity labeling of the Torpedo nicotinic acetylcholine receptor (nAChR) with [3H]d-tubocurarine (dTC) has identified a residue within the gamma-subunit which, along with the analogous residue in delta-subunit, confers selectivity in binding affinities between the two agonist sites for dTC and alpha-conotoxin (alpha Ctx) MI. nAChR gamma-subunit, isolated from nAChR-rich membranes photolabeled with [3H]dTC, was digested with Staphylococcus aureus V8 protease, and a 3H-labeled fragment was purified by reversed-phase high-performance liquid chromatography. Amino-terminal sequence analysis of this fragment identified 3H incorporation in gamma Tyr-111 and gamma Tyr-117 at about 5% and 1% of the efficiency of [3H]dTC photoincorporation at gamma Trp-55, the primary site of [3H]dTC photoincorporation within gamma-subunit [Chiara, D. C., and Cohen, J. B. (1997) J. Biol. Chem 272, 32940-32950]. The Torpedo nAChR delta-subunit residue corresponding to gamma Tyr-111 (delta Arg-113) contains a positive charge which could confer the lower binding affinity seen for some competitive antagonists at the alpha-delta agonist site. To test this hypothesis, we examined by voltage-clamp analysis and/or by [125I]alpha-bungarotoxin competition binding assays the interactions of acetylcholine (ACh), dTC, and alpha Ctx MI with nAChRs containing gamma Y111R or delta R113Y mutant subunits expressed in Xenopus oocytes. While these mutations affected neither ACh equilibrium binding affinity nor the concentration dependence of channel activation, the gamma Y111R mutation decreased by 10-fold dTC affinity and inhibition potency. Additionally, each mutation conferred a 1000-fold change in the equilibrium binding of alpha Ctx MI, with delta R113Y enhancing and gamma Y111R weakening affinity. Comparison of these results with previous results for mouse nAChR reveals that, while the same regions of gamma- (or delta-) subunit primary structure contribute to the agonist-binding sites, the particular amino acids that serve as antagonist affinity determinants are species-dependent.  相似文献   

18.
Molecular studies of the neuronal nicotinic acetylcholine receptor family   总被引:16,自引:0,他引:16  
Nicotinic acetylcholine receptors on neurons are part of a gene family that includes nicotinic acetylcholine receptors on skeletal muscles and neuronal alpha bungarotoxin-binding proteins that in many species, unlike receptors, do not have an acetylcholine-regulated cation channel. This gene superfamily of ligand-gated receptors also includes receptors for glycine and gamma-aminobutyric acid. Rapid progress on neuronal nicotinic receptors has recently been possible using monoclonal antibodies as probes for receptor proteins and cDNAs as probes for receptor genes. These studies are the primary focus of this review, although other aspects of these receptors are also considered. In birds and mammals, there are subtypes of neuronal nicotinic receptors. All of these receptors differ from nicotinic receptors of muscle pharmacologically (none bind alpha bungarotoxin, and some have very high affinity for nicotine), structurally (having only two types of subunits rather than four), and, in some cases, in functional role (some are located presynaptically). However, there are amino acid sequence homologies between the subunits of these receptors that suggest the location of important functional domains. Sequence homologies also suggest that the subunits of the proteins of this family all evolved from a common ancestral protein subunit. The ligand-gated ion channel characteristic of this superfamily is formed from multiple copies of homologous subunits. Conserved domains responsible for strong stereospecific association of the subunits are probably a fundamental organizing principle of the superfamily. Whereas the structure of muscle-type nicotinic receptors appears to have been established by the time of elasmobranchs and has evolved quite conservatively since then, the evolution of neuronal-type nicotinic receptors appears to be in more rapid flux. Certainly, the studies of these receptors are in rapid flux, with the availability of monoclonal antibody probes for localizing, purifying, and characterizing the proteins, and cDNA probes for determining sequences, localizing mRNAs, expressing functional receptors, and studying genetic regulation. The role of nicotinic receptors in neuromuscular transmission is well understood, but the role of nicotinic receptors in brain function is not. The current deluge of data using antibodies and cDNAs is beginning to come together nicely to describe the structure of these receptors. Soon, these techniques may combine with others to better reveal the functional roles of neuronal nicotinic receptors.  相似文献   

19.
GAT107, the (+)-enantiomer of racemic 4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide, is a strong positive allosteric modulator (PAM) of α7 nicotinic acetylcholine receptor (nAChR) activation by orthosteric agonists with intrinsic allosteric agonist activities. The direct activation produced by GAT107 in electrophysiological studies is observed only as long as GAT107 is freely diffusible in solution, although the potentiating activity primed by GAT107 can persist for over 30 min after drug washout. Direct activation is sensitive to α7 nAChR antagonist methyllycaconitine, although the primed potentiation is not. The data are consistent with GAT107 activity arising from two different sites. We show that the coupling between PAMs and the binding of orthosteric ligands requires tryptophan 55 (Trp-55), which is located at the subunit interface on the complementary surface of the orthosteric binding site. Mutations of Trp-55 increase the direct activation produced by GAT107 and reduce or prevent the synergy between allosteric and orthosteric binding sites, so that these mutants can also be directly activated by other PAMs such as PNU-120596 and TQS, which do not activate wild-type α7 in the absence of orthosteric agonists. We identify Tyr-93 as an essential element for orthosteric activation, because Y93C mutants are insensitive to orthosteric agonists but respond to GAT107. Our data show that both orthosteric and allosteric activation of α7 nAChR require cooperative activity at the interface between the subunits in the extracellular domain. These cooperative effects rely on key aromatic residues, and although mutations of Trp-55 reduce the restraints placed on the requirement for orthosteric agonists, Tyr-93 can conduct both orthosteric activation and desensitization among the subunits.  相似文献   

20.
alpha-Bungarotoxin, the classic nicotinic antagonist, has high specificity for muscle type alpha1 subunits in nicotinic acetylcholine receptors. In this study, we show that an 11-amino-acid pharmatope sequence, containing residues important for alpha-bungarotoxin binding to alpha1, confers functional alpha-bungarotoxin sensitivity when strategically placed into a neuronal non-alpha subunit, normally insensitive to this toxin. Remarkably, the mechanism of toxin inhibition is allosteric, not competitive as with neuromuscular nicotinic receptors. Our findings argue that alpha-bungarotoxin binding to the pharmatope, inserted at a subunit-subunit interface diametrically distinct from the agonist binding site, interferes with subunit interface movements critical for receptor activation. Our results, taken together with the structural similarities between nicotinic and GABAA receptors, suggest that this allosteric mechanism is conserved in the Cys-loop ion channel family. Furthermore, as a general strategy, the engineering of allosteric inhibitory sites through pharmatope tagging offers a powerful new tool for the study of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号