首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Amoebae and plasmodia constitute the two vegetative growth phases of the Myxomycete Physarum. In vitro and in vivo phosphorylation of actin in plasmodia is tightly controlled by fragmin P, a plasmodium-specific actin-binding protein that enables actin phosphorylation by the actin-fragmin kinase. We investigated whether amoebal actin is phosphorylated by this kinase, in spite of the lack of fragmin P. Strong actin phosphorylation was detected only following addition of recombinant actin-fragmin kinase to cell-free extracts of amoebae, suggesting that amoebae contain a protein with properties similar to plasmodial fragmin. We purified the complex between actin and this protein to homogeneity. Using an antibody that specifically recognizes phosphorylated actin, we demonstrate that Thr203 in actin can be phosphorylated in this complex. A full-length amoebal fragmin cDNA was cloned and the deduced amino acid sequence shows 65% identity with plasmodial fragmin. However, the fragmins are encoded by different genes. Northern blots using RNA from a developing Physarum strain demonstrate that this fragmin isoform (fragmin A) is not expressed in plasmodia. In situ localization showed that fragmin A is present mainly underneath the plasma membrane. Our results indicate that Physarum amoebae express a fragmin P-like isoform which shares the property of binding actin and converting the latter into a substrate for the actin-fragmin kinase.  相似文献   

2.
F Bernier  G Lemieux  D Pallotta 《Gene》1987,59(2-3):265-277
The encystment of Physarum polycephalum plasmodia, also called spherulation, involves the synthesis of many specific mRNAs and proteins. Most of these molecules accumulate at the onset of the major morphological and physiological changes typical of this differentiation pathway and are not present during the other two transitions leading to dormancy in Physarum, namely sporulation and encystment of amoebae. The nucleotide sequences of apparently full-length cDNA copies of the four major encystment-specific mRNAs were determined. The four sequences included the entire coding regions and at least 26 nucleotides of the 5'-nontranscribed leaders. The encoded proteins were named spherulins. We found that spherulins 1a and 1b are 81% homologous and are thus members of a gene family. They both possess putative signal peptides and N-glycosylation sites, suggesting that they are cell-wall glycoproteins. Spherulin 2a and spherulin 3a are non-homologous proteins. The absence of signal peptides suggests that they are intracellular structural proteins. Low-stringency Southern hybridizations showed that each also belongs to a two-member gene family.  相似文献   

3.
We reported previously that myosins from amoebal and plasmodial stages in the life cycle of Physarum polycephalum differ in the primary structure of heavy chains and phosphorylatable 18,000 Mr light chains, while Ca-binding 14,000 Mr light chains are common to both myosins (Kohama & Takano-Ohmuro, Proc Jpn acad 60B (1984) 431; Kohama et al., J biol chem 260 (1986) 8022). We have carried out immunofluorescence microscopical studies upon differentiating cultures of amoebic colonies, which show apogamic amoebo-plasmodial differentiation as follows: Typical amoebae differentiate into mono-nucleate intermediate cells with swollen nuclei and then into two or multi-nucleate young plasmodia (Anderson et al., Protoplasma 89 (1976) 29. Antibodies against plasmodial myosin heavy chain (PMHC) and 18,000 Mr plasmodial myosin light chain (PMLC18) stained intermediate cells and young plasmodia, but not typical amoebae. On the other hand, antibody against amoebal myosin heavy chain (AMHC) stained typical amoebae and intermediate cells--but not young plasmodia. Thus staining was detected using antibodies against both PMHC and AMHC in intermediate cells. Intermediate cells were also stained by antibody against another plasmodium-specific cytoskeletal protein, viz., high molecular weight actin-binding protein (HMWP). We propose that synthesis of myosin subunits switches immediately from amoebal to plasmodial type in mono-nucleate cells with swollen nuclei. This myosin switching is associated with the initiation of HMWP synthesis.  相似文献   

4.
5.
An unusual actin-encoding gene in Physarum polycephalum.   总被引:2,自引:0,他引:2  
L Adam  A Laroche  A Barden  G Lemieux  D Pallotta 《Gene》1991,106(1):79-86
  相似文献   

6.
7.
Adler PN  Holt CE 《Genetics》1977,87(3):401-420
Rare plasmodia formed in clones of heterothallic amoebae were analyzed in a search for mutations affecting plasmodium formation. The results show that the proportion of mutants varies with both temperature (18°, 26° or 30°) and mating-type allele (mt1, mt2, mt3, mt4). At one extreme, only one of 33 plasmoida formed by mt2 amoebae at 18° is mutant. At the other extreme, three of three plasmodia formed by mt1 amoebae at 30° are mutant. The mutant plasmodia fall into two groups, the GAD (greater asexual differentiation) mutants and the ALC (amoebaless life cycle) mutants. The spores of GAD mutants give rise to amoebae that differentiate into plasmodia asexually at much higher frequencies than normal heterothallic amoebae. Seven of eight gad mutations analyzed genetically are linked to mt and one (gad-12) is not. The gad-12 mutation is expressed in strains with different alleles of mt. The frequency of asexual plasmodium formation is heat sensitive in some (e.g., mt3 gad-11 ), heat-insensitive in two (mt2 gad-8 and mt2 gad-9) and cold-sensitive in one (mt1 gad-12) of twelve GAD mutants analyzed phenotypically. The spores of ALC mutants give rise to plasmodia directly, thereby circumventing the amoebal phase of the life cycle. Spores from five of the seven ALC mutants give rise to occasional amoebae, as well as plasmodia. The amoebae from one of the mutants carry a mutation (alc-1) that is unlinked to mt and is responsible for the ALC phenotype in this mutant. Like gad-12, alc-1 is expressed with different mt alleles. Preliminary observations with amoebae from the other four ALC mutants suggest that two are similar to the one containing alc-1; one gives rise to revertant amoebae, and one gives rise to amoebae carrying an alc mutation and a suppressor of the mutation.  相似文献   

8.
为研究神经系统特异性携氧蛋白———脑红蛋白 (NGB)保护神经元耐受缺氧损伤的分子机制 ,利用酵母双杂交系统从人胎脑cDNA文库中筛选与其有相互作用的蛋白质。序列分析表明 ,其中一个克隆的编码产物与Na ,K ATP酶 β2亚基 (NKA1b2 )序列一致。随后采用PCR方法从人胎脑cDNA文库中扩增获得NKA1b2全长cDNA。蛋白质结合实验表明 ,原核表达的NGB与体外转录翻译得到的NKA1b2在细胞外有结合作用。免疫共沉淀实验证明二者在生理条件下能够以复合物的形式存在。利用NGB系列短截体研究相互作用的位点发现 ,NGB蛋白N末端 1~ 75位氨基酸可与NKA1b2结合 ,但结合力很弱 ,而其C末端 75个氨基酸则与NKA1b2无结合作用 ,由此推测NGB蛋白整体的三维结构是结合所必需的。  相似文献   

9.
10.
The nuclei in the plasmodium of Physarum polycephalum, as of other myxomycetes, contain high amounts of polymalate, which has been proposed to function as a scaffold for the carriage and storage of several DNA-binding proteins [Angerer, B. and Holler, E. (1995) Biochemistry 34, 14741-14751]. By delivering fluorescence-labeled polymalate into a growing plasmodium by injection, we observed microscopic staining of nuclei in agreement with the proposed function. The fluorescence intensity was highest during the reconstruction phase of the nuclei. To examine whether the delivery was under the control of polymalatase or related proteins [Karl, M. & Holler, E. (1998) Eur. J. Biochem.251, 405-412], the cellular distribution of these proteins was also examined by staining with antibodies against polymalatase. Double-stained plasmodia revealed a fluorescent halo around each fluorescent nucleus during the reconsititution. Fluorescent nuclei were not observed when the hydroxyl terminus of polymalate, known to be essential for the binding of polymalatase, was blocked by labeling with fluorescein-5-isothiocyanate. By immune precipitation, it was shown that polymalate and polymalatase or related proteins were in the precipitate. It is concluded that polymalate is delivered to the surface of nuclei in the complex with polymalatase or related proteins. The complex dissociates, and polymalate translocates into the nucleus, while polymalatase or related proteins remain at the surface.  相似文献   

11.
Using a selfing strain of Physarum polycephalum that forms haploid plasmodia, we have isolated temperature-sensitive growth mutants in two ways. The negative selectant, netropsin, was used to enrich for temperature-sensitive mutants among a population of mutagenized amoebae, and, separately, a nonselective screening method was used to isolate plasmodial temperature-sensitive mutants among clonal plasmodia derived from mutagenized amoebae. Complementation in heterokaryons was used to sort the mutants into nine functional groups. When transferred to the restrictive temperature, two mutants immediately lysed, whereas the remainder slowed or stopped growing. Of the two lytic mutants, one affected both amoebae and plasmodia, and the other affected plasmodia alone. The growth-defective mutants were examined for protein and deoxyribonucleic acid synthesis and for aberrations in mitotic behavior. One mutant may be defective in both protein and deoxyribonucleic acid synthesis, and another only in deoxyribonucleic acid synthesis. The latter shows a striking reduction in the frequency of postmitotic reconstruction nuclei at the restrictive temperature. We believe that this mutant, MA67, is affected in a step in the nuclear replication cycle occurring late in G2. Execution of this step is necessary for both mitosis and chromosome replication.  相似文献   

12.
β-Poly-L-malate (PMA) is synthesized by plasmodia of Physarum polycephalum during growth and secreted into the culture medium. There it is degraded to L-malate after growth has ceased. Its concentration is highest in cell nuclei, where it probably performs a plasmodium-specific function.  相似文献   

13.
14.
SYNOPSIS. Studies comparing mitosis in amoebae and plasmodia of the true slime mold Didymium nigripes reveal that at the time of differentiation pronounced changes occur in the mitotic process. Not only does the amount of time required for division of the 2 stages differ, but plasmodial mitosis is characterized by persistence of the nuclear membrane and the apparent lack of centrioles. The origin of multinucleate plasmodia from uninucleate cells which have already undergone cytoplasmic differentiation is described. Division time in a population of amoebae becomes more uniform after those cells which are destined to form plasmodia have differentiated.
The observations and data presented indicated that differences in mitotic behavior also occur between amoebae of 3 stocks with differences in plasmodial structure and behavior. Comparison of mitosis in the plasmodia of these 3 stocks revealed no significant differences.  相似文献   

15.
In vitro stimulation of incorporation of tritiated thymidine by human peripheral lymphocytes in response to two soluble antigens and three different intact but nonviable fungal forms of Coccidioides immitis was studied. Lymphocytes were obtained from three groups of subjects: healthy skin test positive, healthy skin test negative, and disseminated disease. Dose-response relationships to the intact forms (endospores, arthrospores, and spherules) were determined. Responses of lymphocytes from healthy skin test-positive subjects and subjects with disseminated disease were similar. Ranking of antigens by “potency” gave the following results: endospores = spherulin > mycelial filtrate > arthrospores = spherules. Endospores were the most potent of the intact forms in 10 of 11 subjects. The clear superiority of endospores over spherules is not due to differences in the total particle surface area available for presentation to the leukocytes. All antigens tested except spherules could discriminate between skin test-positive and skin test-negative subjects in this in vitro system. A T-cell-enriched, B-cell- and mono-cyte-depleted cell population demonstrated an active response to spherulin and to endospores. The variance of these finding with animal studies demonstrating spherules to be immunogenically superior when compared to endospores is discussed. This may have importance in future studies in humans of vaccines to C. immitis.  相似文献   

16.
Truitt CL  Hoffman CS  Holt CE 《Genetics》1982,101(1):35-55
The usual sequence of forms in the Physarum polycephalum life cycle is plasmodium-spore-amoeba-plasmodium. So-called "amoebaless life cycle" or alc mutants of this Myxomycete undergo a simplified plasmodium-spore-plasmodium life cycle. We have analyzed three independently isolated alc mutants and found in each case that the failure of the spores to give rise to amoebae is due to a recessive Mendelian allele. The three mutations are tightly linked to one another and belong to a single complementation group, alcA. The mutations are pleiotropic, not only interfering with the establishment of the amoebal form at spore germination, but also affecting the phenotype of alc amoebae, which occasionally arise from alc spores. The alc amoebae (1) grow more slowly than wild type, particularly at elevated temperatures; (2) tend to transform directly into plasmodia, circumventing the sexual fusion of amoebae that usually accompanies plasmodium formation; and (3) form plasmodia by the sexual mechanism less efficiently than wild-type amoebae. The various effects of an alc mutation seem to derive from mutation of a single gene, since reversion for one effect is always accompanied by reversion for the other effects. Moreover, a mutation, aptA1, that blocks direct plasmodium formation by alcA amoebae, also increases their growth rate to near normal. The manner of plasmodium formation in alcA strains differs significantly from that in another class of mutants, the gad mutants. Unlike gad amoebae, alcA amoebae need not reach a critical density in order to differentiate directly into plasmodia and do not respond to the extracellular inducer of differentiation. In addition, alcA differentiation is not prevented by a mutation, npfA1, that blocks direct differentiation by most gad amoebae.  相似文献   

17.
In the acellular slime mold, Physarum polycephalum, the differentiation of amoebae into plasmodia is controlled by a mating type locus, mt. Amoebae carrying heterothallic alleles usually do not differentiate within clones; plasmodia form when two amoebae carrying different alleles fuse and undergo karyogamy. In this paper, we show that amoebae heterozygous for heterothallic alleles can be isolated and maintained as amoebae; the amoebae form plasmodia in clones without a change in ploidy. Plasmodia were also found to be formed, infrequently, by heterothallic amoebae of a single mating type. The plasmodia are healthy and are also formed without a change in ploidy. Thus, the presence of two different heterothallic mating type genes in a single nucleus is compatible with the amoebal state and one heterothallic mating type gene is compatible with the plasmodial state, once established.  相似文献   

18.
Genetic evidence has shown the presence of a common spindle pole organiser in Physarum amoebae and plasmodia. But the typical centrosome and mitosis observed in amoebae are replaced in plasmodia by an intranuclear mitosis devoid of any structurally defined organelle. The fate of gamma-tubulin and of another component (TPH17) of the centrosome of Physarum amoebae was investigated in the nuclei of synchronous plasmodia. These two amoebal centrosomal elements were present in the nuclear compartment during the entire cell cycle and exhibited similar relocalisation from metaphase to telophase. Three preparation methods showed that gamma-tubulin containing material was dispersed in the nucleoplasm during interphase. It constituted an intranuclear thread-like structure. In contrast, the TPH17 epitope exhibited a localisation close to the nucleolus. In late G2-phase, the gamma-tubulin containing elements condensed in a single organelle which further divided. Intranuclear microtubules appeared before the condensation of the gamma-tubulin material and treatment with microtubule poisons suggested that microtubules were required in this process. The TPH17 epitope relocalised in the intranuclear spindle later than the gamma-tubulin containing material suggesting a maturation process of the mitotic poles. The decondensation of the gamma-tubulin material and of the material containing the TPH17 epitope occurred immediately after telophase. Hence in the absence of a structurally defined centrosome homologue, the microtubule nucleating material undergoes a cycle of condensation and decondensation during the cell cycle.  相似文献   

19.
A 45 kDa protein was isolated from a soluble vaccine prepared from formaldehyde-killed spherules of Coccidioides immitis. From the N-terminal amino acid sequence, the protein yielded a 17-amino-acid peptide that was homologous to sequences of other fungal aspartyl proteinases. The coccidioidal cDNA encoding the proteinase was amplified using oligonucleotide primers designed from the 45 kDa N-terminal amino acid sequence and a fungal aspartyl proteinase consensus amino acid sequence. The PCR product was cloned and sequenced, and the remaining 5' upstream and 3' downstream cDNA was amplified, cloned, and sequenced. The cDNA encoding the coccidioidal aspartyl proteinase open reading frame was cloned and the fusion protein containing a C-terminal His-tag expressed in E. coli. The recombinant aspartyl proteinase was purified by immobilized metal affinity chromatography. This recombinant protein will be used for further studies to evaluate its antigenicity, including protective immunogenicity.  相似文献   

20.
The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg2+-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号