首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vertebrate retina develops from an amorphous sheet of dividing retinal progenitor cells (RPCs) through a sequential process that culminates in an exquisitely patterned neural tissue. A current model for retinal development posits that sequential cell-type differentiation is the result of changes in the intrinsic competence state of multipotent RPCs as they advance in time and that the intrinsic changes are influenced by continuous changes in the extracellular environment. Although several studies support the proposition that newly differentiated cells alter the extrinsic state of the developing retina, it is still far from clear what role they play in modifying the extracellular environment and in influencing the properties of RPCs. Here, we specifically ablate retinal ganglion cells (RGCs) as they differentiate, and we determine the impact of RGC absence on retinal development. We find that RGCs are not essential for changing the competence of RPCs, but they are necessary for maintaining sufficient numbers of RPCs by regulating cell proliferation via growth factors. Intrinsic rather than extrinsic factors are likely to play the critical roles in determining retinal cell fate.  相似文献   

2.
3.
The basic-helix-loop helix factor Math5 (Atoh7) is required for retinal ganglion cell (RGC) development. However, only 10% of Math5-expressing cells adopt the RGC fate, and most become photoreceptors. In principle, Math5 may actively bias progenitors towards RGC fate or passively confer competence to respond to instructive factors. To distinguish these mechanisms, we misexpressed Math5 in a wide population of precursors using a Crx BAC or 2.4 kb promoter, and followed cell fates with Cre recombinase. In mice, the Crx cone-rod homeobox gene and Math5 are expressed shortly after cell cycle exit, in temporally distinct, but overlapping populations of neurogenic cells that give rise to 85% and 3% of the adult retina, respectively. The Crx>Math5 transgenes did not stimulate RGC fate or alter the timing of RGC births. Likewise, retroviral Math5 overexpression in retinal explants did not bias progenitors towards the RGC fate or induce cell cycle exit. The Crx>Math5 transgene did reduce the abundance of early-born (E15.5) photoreceptors two-fold, suggesting a limited cell fate shift. Nonetheless, retinal histology was grossly normal, despite widespread persistent Math5 expression. In an RGC-deficient (Math5 knockout) environment, Crx>Math5 partially rescued RGC and optic nerve development, but the temporal envelope of RGC births was not extended. The number of early-born RGCs (before E13) remained very low, and this was correlated with axon pathfinding defects and cell death. Together, these results suggest that Math5 is not sufficient to stimulate RGC fate. Our findings highlight the robust homeostatic mechanisms, and role of pioneering neurons in RGC development.  相似文献   

4.
5.
6.
7.
8.
The specification of embryonic cells to produce the retina begins at early embryonic stages as a multi-step process that gradually restricts fate potentials. First, a subset of embryonic cells becomes competent to form retina by their lack of expression of endo-mesoderm-specifying genes. From these cells, a more restricted subset is biased to form retina by virtue of their close proximity to sources of bone morphogenetic protein antagonists during neural induction. During gastrulation, the definitive RSCs (retinal stem cells) are specified as the eye field by interactions with underlying mesoderm and the expression of a network of retina-specifying genes. As the eye field is transformed into the optic vesicle and optic cup, a heterogeneous population of RPCs (retinal progenitor cells) forms to give rise to the different domains of the retina: the optic stalk, retinal pigmented epithelium and neural retina. Further diversity of RPCs appears to occur under the influences of cell-cell interactions, cytokines and combinations of regulatory genes, leading to the differentiation of a multitude of different retinal cell types. This review examines what is known about each sequential step in retinal specification during normal vertebrate development, and how that knowledge will be important to understand how RSCs might be manipulated for regenerative therapies to treat retinal diseases.  相似文献   

9.
Fu X  Sun H  Klein WH  Mu X 《Developmental biology》2006,299(2):424-437
During vertebrate retinal development, the seven retinal cell types differentiate sequentially from a single population of retinal progenitor cells (RPCs) and organize themselves into a distinct laminar structure. The purpose of this study was to determine whether beta-catenin, which functions both as a nuclear effector for the canonical Wnt signaling pathway and as a regulator of cell adhesion, is required for retinal neurogenesis or lamination. We used the Cre-loxP system to either eliminate beta-catenin or to express a constitutively active form during retinal neurogenesis. Eliminating beta-catenin did not affect cell differentiation, but did result in the loss of the radial arrangement of RPCs and caused abnormal migration of differentiated neurons. As a result, the laminar structure was massively disrupted in beta-catenin-null retinas, although all retinal cell types still formed. In contrast to other neural tissues, eliminating beta-catenin did not significantly reduce the proliferation rate of RPCs; likewise, activating beta-catenin ectopically in RPCs did not result in overproliferation, but loss of neural retinal identity. These results indicate that beta-catenin is essential during retinal neurogenesis as a regulator of cell adhesion but not as a nuclear effector of the canonical Wnt signaling pathway. The results further imply that retinal lamination and retinal cell differentiation are genetically separable processes.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Vertebrate retinal progenitor cells (RPCs) undergo a robust proliferative expansion to produce enough cells for the retina to form appropriately. Vsx2 (formerly Chx10), a homeodomain protein expressed in RPCs, is required for sufficient proliferation to occur. Sonic Hedgehog protein (SHH), secreted by retinal ganglion cells (RGCs), activates Hedgehog (Hh) signaling in RPCs and is also required for sufficient proliferation to occur. Therefore, we sought to determine if reduced Hh signaling is a contributing factor to the proliferation changes that occur in the absence of Vsx2. To do this, we examined Shh expression and Hh signaling activity in the homozygous ocular retardation J (orJ) mouse, which harbors a recessive null allele in the Vsx2 gene. We found that Shh expression and Hh signaling activity are delayed during early retinal development in orJ mice and this correlates with a delay in the onset of RGC differentiation. At birth, reduced expression of genes regulated by Hh signaling was observed despite the production of SHH ligand. orJ RPCs respond to pre-processed recombinant SHH ligand (SHH-N) in explant culture as evidenced by increased proliferation and expression of Hh target genes. Interestingly, proliferation in the orJ retina is further inhibited by cyclopamine, an antagonist of Hh signaling. Our results suggest that reduced Hh signaling contributes to the reduced level of RPC proliferation in the orJ retina, thereby revealing a role for Vsx2 in mediating mitogen signaling.  相似文献   

20.
Retinal neurogenesis ceases by the early postnatal period, although retinal progenitor cells (RPCs) persist throughout life. In this study, we show that in the mammalian eye, the function of Toll-like receptor 4 (TLR4) extends beyond regulation of the innate immune response; it restricts RPC proliferation. In TLR4-deficient mice, enhanced proliferation of cells reminiscent of RPCs is evident during the early postnatal period. In vitro experiments demonstrate that TLR4 acts as an intrinsic regulator of RPC fate decision. Increased TLR4 expression in the eye correlates with the postnatal cessation of cell proliferation. However, deficient TLR4 expression is not sufficient to extend the proliferative period but rather contributes to resumption of proliferation in combination with growth factors. Proliferation in vivo is inhibited by both MyD88-dependent and -independent pathways, similar to the mechanisms activated by TLR4 in immune cells. Thus, our study attributes a novel role to TLR4 as a negative regulator of RPC proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号