首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The attachment of erythrocytes infected with Plasmodium falciparum to the microvessels of the brain leads to a pathological condition known as cerebral malaria. There are no effective therapeutic means for alleviating this. In this review, Kirkwood Land, Irwin Sherman, Jurg Gysin and Ian Crandall discuss the potential of anti-adhesive peptides and antibodies as a means of treating cerebral malaria. Adhesin proteins on the surface of the parasite-infected red blood cell as well as target cell ligand molecules are discussed in the context of anti-adhesion therapy.  相似文献   

2.
The increasing resistance of pathogens to antibiotics causes a huge clinical burden that places great demands on academic researchers and the pharmaceutical industry for resolution. Antimicrobial peptides, part of native host defense, have emerged as novel potential antibiotic alternatives. Among the different classes of antimicrobial peptides, proline-rich antimicrobial peptides, predominantly sourced from insects, have been extensively investigated to study their specific modes of action. In this review, we focus on recent developments in these peptides. They show a variety of modes of actions, including mechanism shift at high concentration, non-lytic mechanisms, as well as possessing different intracellular targets and lipopolysaccharide binding activity. Furthermore, proline-rich antimicrobial peptides display the ability to not only modulate the immune system via cytokine activity or angiogenesis but also possess properties of penetrating cell membranes and crossing the blood brain barrier suggesting a role as potential novel carriers. Ongoing studies of these peptides will likely lead to the development of more potent antimicrobial peptides that may serve as important additions to the armoury of agents against bacterial infection and drug delivery.  相似文献   

3.
Kang YA  Na JI  Choi HR  Choi JW  Kang HY  Park KC 《Peptides》2011,32(10):2134-2136
Ultraviolet (UV) radiation induced inflammation plays an important role in the aging of human skin. Prostaglandin (PG) E2 is the primary mediator of UVB induced photoinflammation. We screened an internal library for dipeptides that inhibited UVB induced PGE2 synthesis but showed no cytotoxicity toward human keratinocytes. We identified three highly active inhibitory sequences, LE (Leu + Glu), MW (Met + Trp) and MY (Met + Tyr). To evaluate their efficacy in human skin, 24 sites of abdomen skin were irradiated with a 308 nm excimer laser (300 mJ/cm2), after which 2% LE, MW, MY or a control were applied to the irradiated sites for 24 h. The erythema index (EI) was measured before and 24 h after treatment. The results showed that LE and MW significantly decreased UVB induced erythema (p = 0.041 and p = 0.036, respectively), but ME did not. Overall, LE and MW are candidate cosmeceutical peptides that can protect skin from UVB induced photoinflammation.  相似文献   

4.
New metal complexes as potential therapeutics   总被引:5,自引:0,他引:5  
The many activities of metal ions in biology have stimulated the development of metal-based therapeutics. Cisplatin, as one of the leading metal-based drugs, is widely used in treatment of cancer, being especially effective against genitourinary tumors such as testicular. Significant side effects and drug resistance, however, have limited its clinical applications. Biological carriers conjugated to cisplatin analogs have improved specificity for tumor tissue, thereby reducing side effects and drug resistance. Platinum complexes with distinctively different DNA binding modes from that of cisplatin also exhibit promising pharmacological properties. Ruthenium and gold complexes with antitumor activity have also evolved. Other metal-based chemotherapeutic compounds have been investigated for potential medicinal applications, including superoxide dismutase mimics and metal-based NO donors/scavengers. These compounds have the potential to modulate the biological properties of superoxide anion and nitric oxide.  相似文献   

5.
Despite recent pharmacological advances in heart failure therapy, mortality from acute decompensated heart failure remains high. Conventional therapies are often insufficient to address the complex interplay between structural, functional, neurohumoral, and renal mechanisms involved in the heart failure syndrome. The natriuretic peptide system, however, offers a unique pleiotropic strategy which could bridge this gap in heart failure therapy. Exogenous administration of native A-type and B-type natriuretic peptides has been met with both success and limitations, and despite the limitations, remains a worthwhile endeavor. Alternatively, synthetic modification to create "designer" chimeric peptides holds the possibility to extend both the application and therapeutic benefits possible with a natriuretic peptide based approach. Herein we describe the development of natriuretic peptide based heart failure therapies, including the design, rationale, and preliminary studies of the novel chimeric peptides CD-NP and CU-NP.  相似文献   

6.
7.
By reason of their cytotoxicity, ribonucleases (RNases) are potential anti-tumor drugs. Particularly members from the RNase A and RNase T1 superfamilies have shown promising results. Among these enzymes, Onconase, an RNase from the Northern Leopard frog, is furthest along in clinical trials. A general model for the mechanism of the cytotoxic action of RNases includes the interaction of the enzyme with the cellular membrane, internalization, translocation to the cytosol, and degradation of ribonucleic acid. The interplay of these processes as well as the role of the thermodynamic and proteolytic stability, the catalytic activity, and the capability of the RNase to evade the intracellular RNase inhibitor has not yet been fully elucidated. This paper discusses the various approaches to exploit RNases as cytotoxic agents.  相似文献   

8.
Microtubules (MTs), cytoskeletal elements found in all mammalian cells, play a significant role in cell structure and in cell division. They are especially critical in the proper functioning of post-mitotic central nervous system neurons, where MTs serve as the structures on which key cellular constituents are trafficked in axonal projections. MTs are stabilized in axons by the MT-associated protein tau, and in several neurodegenerative diseases, including Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease, tau function appears to be compromised due to the protein dissociating from MTs and depositing into insoluble inclusions referred to as neurofibrillary tangles. This loss of tau function is believed to result in alterations of MT structure and function, resulting in aberrant axonal transport that likely contributes to the neurodegenerative process. There is also evidence of axonal transport deficiencies in other neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington’s disease, which may result, at least in part, from MT alterations. Accordingly, a possible therapeutic strategy for such neurodegenerative conditions is to treat with MT-stabilizing agents, such as those that have been used in the treatment of cancer. Here, we review evidence of axonal transport and MT deficiencies in a number of neurodegenerative diseases, and summarize the various classes of known MT-stabilizing agents. Finally, we highlight the growing evidence that small molecule MT-stabilizing agents provide benefit in animal models of neurodegenerative disease and discuss the desired features of such molecules for the treatment of these central nervous system disorders.  相似文献   

9.
The study of synthetic peptides corresponding to discrete regions of proteins has facilitated the understanding of protein structure-activity relationships. Short peptides can also be used as powerful therapeutic agents. However, in many instances, small peptides are prone to rapid degradation or aggregation and may lack the conformation required to mimic the functional motifs of the protein. For peptides to function as pharmacologically active agents, efficient production or expression, high solubility, and retention of biological activity through purification and storage steps are required. We report here the design, expression, and functional analysis of eight engineered GST proteins (denoted GSHKTs) in which peptides ranging in size from 8 to 16 amino acids and derived from human high molecular weight kininogen (HK) domain 5 were inserted into GST (between Gly-49 and Leu-50). Peptides derived from HK are known to inhibit cell proliferation, angiogenesis, and tumor metastasis, and the biological activity of the HK peptides was dramatically (>50-fold) enhanced following insertion into GST. GSHKTs are soluble and easily purified from Escherichia coli by affinity chromatography. Functionally, these hybrid proteins cause inhibition of endothelial cell proliferation. Crystallographic analysis of GSHKT10 and GSHKT13 (harboring 10- and 13-residue HK peptides, respectively) showed that the overall GST structure was not perturbed. These results suggest that the therapeutic efficacy of short peptides can be enhanced by insertion into larger proteins that are easily expressed and purified and that GST may potentially be used as such a carrier.  相似文献   

10.
  1. Download : Download high-res image (152KB)
  2. Download : Download full-size image
  相似文献   

11.
A series of 2-aminothiadiazole of inhibitors of AKT1 is described. SAR relationships are discussed, along with selectivity for protein kinase A (PKA) and cyclin-dependent kinase 2 (CDK2). Moderate selectivity observed in several compounds for AKT1 versus PKA is rationalized by X-ray crystallographic analysis. Key compounds showed activity in cellular assays measuring phosphorylation of two AKT substrates, PRAS40 and FKHRL1. Compound 30 was advanced to a mouse liver PD assay, where it showed dose-dependent inhibition of AKT activity, as measured by the inhibition of phospho-PRAS40.  相似文献   

12.
The prevalence of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis has increased during the last two decades and contributed a great deal to morbidity and an appreciable mortality in the world. Until now, few novel efficacious drugs have been discovered to treat, control or even cure these diseases with a low adverse-effect profile. Meanwhile, glucocorticoids are still the mainstay for the treatment of allergic disease. Therefore, it is necessary to isolate novel anti-allergic agents from natural resources. Recently, marine algae have received much attention as they are a valuable source of chemically diverse bioactive compounds with numerous health benefit effects. This review focuses on anti-allergic agents derived from marine algae and presents an overview of their pharmaceutical potential in the treatment of allergic disorders.  相似文献   

13.
Matrix metalloproteinases (MMPs) play a central role in many biological processes such as development, morphogenesis and wound healing, but their unbalanced activities are implicated in numerous disease processes such as arthritis, cancer metastasis, atherosclerosis, nephritis and fibrosis. One of the key mechanisms to control MMP activities is inhibition by endogenous inhibitors called tissue inhibitors of metalloproteinases (TIMPs). This review highlights the structures and inhibition mechanism of TIMPs, the biological activities of TIMPs, the unique properties of TIMP-3, and the altered specificity towards MMPs achieved by mutagenesis. A potential therapeutic use of TIMP variants is discussed.  相似文献   

14.
Autophagy is an evolutionarily conserved mechanism for protein degradation that is critical for the maintenance of homeostasis in man. Autophagy has unexpected pleiotropic functions that favor survival of the cell, including nutrient supply under starvation, cleaning of the cellular interior, defense against infection and antigen presentation. Moreover, defective autophagy is associated with a diverse range of disease states, including neurodegeneration, cancer and Crohn's disease. Here we discuss the roles of mammalian autophagy in health and disease and highlight recent advances in pharmacological manipulation of autophagic pathways as a therapeutic strategy for a variety of pathological conditions.  相似文献   

15.
16.
Research on the physiological role of atrial peptides in man is limited, and the potential for these peptides, or more stable analogues, in therapeutics is uncertain. It is clear, however, that plasma levels of immunoreactive atrial natriuretic peptide (IR-ANP) are increased in volunteers taking a high sodium diet, and are elevated in patients with heart failure, chronic renal failure, and primary aldosteronism. There is suggestive evidence that IR-ANP levels are increased also in essential hypertension, although overlap with normotensives is considerable. Injection or infusion of atrial peptides into man results in a diuresis, an increased output of urine electrolytes, a fall in blood pressure and a rise in heart rate, suppression of aldosterone and sometimes of renin also, and stimulation of norepinephrine. In essential hypertensives, urinary effects may be greater than in normotensives. Heart failure patients show a rise in cardiac output and falls in both systemic and pulmonary arterial pressure. Over the next few years and especially if specific antagonists can be developed, the physiologic and pathophysiologic roles of atrial peptides in normal man and in clinical disorders should be clarified. It is possible that stable analogues of atrial peptides will find a place in the treatment of cardiac failure, renal failure, and perhaps hypertension.  相似文献   

17.
Progressive retinal degeneration manifesting as age-related macular degeneration (AMD) in the elderly affects millions of individuals worldwide. Among various blinding diseases, AMD is the leading cause of central vision impairment in developed countries. Poor understanding of AMD etiology hampers the development of therapeutics against this devastating ocular disease. Currently, daily intravitreal injections of anti-angiogenic drugs, preventing abnormal vessel growth are the only treatment option for wet AMD. However, for dry AMD associated with retinal atrophy, at present there is no cure available. Recent clinical research has demonstrated beneficial effects of plant-derived compounds for various eye disorders. Thus, the ongoing efforts toward discovering efficient treatments preventing or delaying AMD progression focus on implementing a healthy diet rich in vitamins, including vitamin A, E, and C, minerals and carotenoids, in particular lutein and zeaxanthin, to reduce the disease burden. In addition, studies in cell culture and animal models indicated therapeutic potential of dietary polyphenolic compounds present in fruits and vegetables. These natural compounds protect visual function and retinal morphology likely due to their anti-oxidant and anti-inflammatory properties. Although understanding of the exact mechanism of these compounds’ positive effects requires further investigation, they provide non-invasive alternative to battle AMD-like condition. Additionally, studies carried in animal models mimicking AMD-like pathology, examining the pharmacological potential of particular retinoid analogs, demonstrated promising results for their use, and thus they should be considered as an option in developing therapies for AMD. In here, we summarize the most current knowledge regarding developments of therapeutic options to maintain ocular health and prevent vision loss associated with aging.Impact statementAge-related macular degeneration (AMD) is a devastating retinal degenerative disease. Epidemiological reports showed an expected increasing prevalence of AMD in the near future. The only one existing FDA-approved pharmacological treatment involves an anti-vascular endothelial growth factor (VEGF) therapy with serious disadvantages. This limitation emphasizes an alarming need to develop new therapeutic approaches to prevent and treat AMD. In this review, we summarize scientific data unraveling the therapeutic potential of the specific retinoid and natural compounds. The experimental results reported by us and other research groups demonstrated that retinoid analogs and compounds with natural product scaffolds could serve as lead compounds for the development of new therapeutic agents with potential to prevent or slow down the pathogenesis of AMD.  相似文献   

18.
A novel uracil-containing enediyne was synthesized by the fusion at N(1) and N(3) of uracil with an 11-membered cyclic enediyne. Compound was found to be stable against cycloaromatization at 80 degreesC. Thus, it did not cause DNA-damage. Unlike other alkylated uracil derivatives 2--6, highly strained uracil-containing enediyne was reacted with methyl thioglycolate at 25 degreesC to produce uracil () and linear enediyne. This reactivity toward a sulfhydryl group may play a significant role in the mechanism by which compound directed its cytotoxicity toward tumor cell lines. Tumor cells were found to be more susceptible to enediyne than normal human embryonic lung cells. A combination of with adriamycin or 1-(beta-D-arabinofuranosyl)cytosine resulted in synergistic anticancer activity against murine L1210 and P388 leukemias, Sarcoma 180, and human CCRF--CEM lymphoblastic leukemia. After treatment of Molt-4 cells with uracil-containing enediyne, light microscope examination demonstrated the presence of cell shrinkage and nuclear segmentation. Treatment of cultured Molt-4 human leukemia cells with enediyne resulted in a time-dependent depletion of glutathione (GSH) whereas the exposure of the cells to the GSH precursor N-acetylcysteine (NAC) resulted in a substantial suppression of this effect. As such, involvement of GSH depletion in the process of apoptosis may explain the mechanism of action of non-genotoxic enediyne against malignant tumor cell lines.  相似文献   

19.
The voltage-dependent anion channel 1 (VDAC1), localized in the outer mitochondrial membrane, mediates metabolic cross-talk between the mitochondrion and the cytoplasm and thus serves a fundamental role in cell energy metabolism. VDAC1 also plays a key role in mitochondria-mediated apoptosis, interacting with anti-apoptotic proteins. Resistance of cancer cells to apoptosis involves quenching the mitochondrial apoptotic pathway by over-expression of anti-apoptotic/pro-survival hexokinase (HK) and Bcl-2 family proteins, proteins that mediate their anti-apoptotic activities via interaction with VDAC1. Using specifically designed VDAC1-based cell-penetrating peptides, we targeted these anti-apoptotic proteins to prevent their pro-survival/anti-apoptotic activities. Anti-apoptotic proteins are expressed at high levels in B-cell chronic lymphocytic leukemia (CLL), an incurable disease requiring innovative new approaches to improve therapeutic outcome. CLL is characterized by a clonal accumulation of mature neoplastic B cells that are resistant to apoptosis. Specifically, we demonstrate that the VDAC1-based peptides (Antp-LP4 and N-Terminal-Antp) selectively kill peripheral blood mononuclear cells (PBMCs) obtained from CLL patients, yet spare those obtained from healthy donors. The cell death induction competence of the peptides was well correlated with the amount of double positive CD19/CD5 cancerous CLL PBMCs, further illustrating their selectivity toward cancer cells. Moreover, these VDAC1-based peptides induced apoptosis by activating the mitochondria-mediated pathway, reflected in membrane blebbing, condensation of nuclei, DNA fragmentation, release of mitochondrial cytochrome c, loss of mitochondrial membrane potential, decreased cellular ATP levels and detachment of HK, all leading to apoptotic cell death. Thus, the mode of action of the peptides involves decreasing energy production and inducing apoptosis. Over 27 versions of cell-penetrating VDAC1-based peptides were designed and screened to identify the most stable, short and apoptosis-inducing peptides toward CLL-derived lymphocytes. In this manner, three optimized peptides suitable for in vivo studies were identified. This study thus reveals the potential of VDAC1-based peptides as an innovative and effective anti-CLL therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号